Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation.
CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the de...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2025-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0315538 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832540277885108224 |
---|---|
author | Iran Sarafraz Hamed Agahi Azar Mahmoodzadeh |
author_facet | Iran Sarafraz Hamed Agahi Azar Mahmoodzadeh |
author_sort | Iran Sarafraz |
collection | DOAJ |
description | CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results. In this article, an adaptive method for CNN automatic configuration for neonatal brain image segmentation is presented based on the encoder-decoder structure, in which the hyperparameters of this network, i.e., size, length, and width of the filter in each layer along with the type of pooling functions with a reinforcement learning approach and an LA model are determined. These LA models determine the optimal configuration for the CNN model by using DICE and ASD segmentation quality evaluation criteria, so that the segmentation quality can be maximized based on the goal criteria. The effectiveness of the proposed method has been evaluated using a database of infant MRI images and the results have been compared with previous methods. The results show that by using the proposed method, it is possible to segment NBI with higher quality and accuracy. |
format | Article |
id | doaj-art-be9bf482c41a4424b7d9d05a09d12def |
institution | Kabale University |
issn | 1932-6203 |
language | English |
publishDate | 2025-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj-art-be9bf482c41a4424b7d9d05a09d12def2025-02-05T05:31:13ZengPublic Library of Science (PLoS)PLoS ONE1932-62032025-01-01201e031553810.1371/journal.pone.0315538Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation.Iran SarafrazHamed AgahiAzar MahmoodzadehCNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results. In this article, an adaptive method for CNN automatic configuration for neonatal brain image segmentation is presented based on the encoder-decoder structure, in which the hyperparameters of this network, i.e., size, length, and width of the filter in each layer along with the type of pooling functions with a reinforcement learning approach and an LA model are determined. These LA models determine the optimal configuration for the CNN model by using DICE and ASD segmentation quality evaluation criteria, so that the segmentation quality can be maximized based on the goal criteria. The effectiveness of the proposed method has been evaluated using a database of infant MRI images and the results have been compared with previous methods. The results show that by using the proposed method, it is possible to segment NBI with higher quality and accuracy.https://doi.org/10.1371/journal.pone.0315538 |
spellingShingle | Iran Sarafraz Hamed Agahi Azar Mahmoodzadeh Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation. PLoS ONE |
title | Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation. |
title_full | Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation. |
title_fullStr | Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation. |
title_full_unstemmed | Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation. |
title_short | Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation. |
title_sort | convolutional neural network cnn configuration using a learning automaton model for neonatal brain image segmentation |
url | https://doi.org/10.1371/journal.pone.0315538 |
work_keys_str_mv | AT iransarafraz convolutionalneuralnetworkcnnconfigurationusingalearningautomatonmodelforneonatalbrainimagesegmentation AT hamedagahi convolutionalneuralnetworkcnnconfigurationusingalearningautomatonmodelforneonatalbrainimagesegmentation AT azarmahmoodzadeh convolutionalneuralnetworkcnnconfigurationusingalearningautomatonmodelforneonatalbrainimagesegmentation |