Antiaging Property and Mechanism of Phase-Change Asphalt with PEG as an Additive

In this study, phase-change asphalt was prepared with polyethylene glycol (PEG-1000) as a modifier. The short- and long-term antiaging performances were characterized by rolling-thin-film-oven (RTFOT) and pressure-aging vessel (PAV) tests, respectively. The functional groups and “bee structures” of...

Full description

Saved in:
Bibliographic Details
Main Authors: Huiru Wang, Yanmin Wang, Xian Li, Min Chen, Yanling Wu, Cuicui Sun, Xiaoning Wang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2020/7598049
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, phase-change asphalt was prepared with polyethylene glycol (PEG-1000) as a modifier. The short- and long-term antiaging performances were characterized by rolling-thin-film-oven (RTFOT) and pressure-aging vessel (PAV) tests, respectively. The functional groups and “bee structures” of PEG-modified asphalt and base asphalt were characterized by Fourier transform infrared absorption spectroscopy (FTIR) and atomic force microscopy (AFM). The research results indicate that the additive of PEG can improve the high-temperature, temperature sensitivity, and the antiaging properties of asphalt. The FTIR reveals that only physical blending and no chemical reaction occurs between PEG and asphalt. AFM topography indicates that smaller “bee structures” appear on the surface of PEG-modified asphalt and these structures do not change during aging.
ISSN:1687-8434
1687-8442