Influence of Spiral Angle on the Performance of Spiral Oil Wedge Sleeve Bearing

Spiral angel is an important structure parameter of spiral oil wedge sleeve bearing, which produces greater impact on bearing performance. Based on JFO boundary condition, the generalized Reynolds equations considering four slip conditions are established. Using the concept of partial derivatives, s...

Full description

Saved in:
Bibliographic Details
Main Authors: Li-li Wang, Qing-liang Zeng, Xin Zhang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2018/5051794
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spiral angel is an important structure parameter of spiral oil wedge sleeve bearing, which produces greater impact on bearing performance. Based on JFO boundary condition, the generalized Reynolds equations considering four slip conditions are established. Using the concept of partial derivatives, stiffness and damping coefficients of sleeve bearing are calculated. The results show that carrying capacity and friction drag of oil film decrease, temperature rise decreases first and then increases, and end leakage rate, stiffness, and damping coefficients generally increase first and then decrease with the increase of spiral angle. The carrying capacity, friction drag, temperature rise, stiffness, and damping coefficients are smaller and the end leakage rate is higher considering wall slip and JFO condition compared with reckoning with no slip and Reynolds boundary condition.
ISSN:1023-621X
1542-3034