Noncommutative Correction to the Entropy of BTZ Black Hole with GUP

We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tunneling formalism, we apply the Hamilton-Jacobi me...

Full description

Saved in:
Bibliographic Details
Main Authors: M. A. Anacleto, F. A. Brito, B. R. Carvalho, E. Passos
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2021/6633684
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tunneling formalism, we apply the Hamilton-Jacobi method by using the Wentzel-Kramers-Brillouin (WKB) approach. In the present study, we have obtained logarithmic corrections to entropy due to the effect of noncommutativity and GUP. We also address the issue concerning stability of the noncommutative BTZ black hole by investigating its modified specific heat capacity.
ISSN:1687-7357
1687-7365