HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation

The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constr...

Full description

Saved in:
Bibliographic Details
Main Authors: Shu-Li Mei, De-Hai Zhu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/417486
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the image denoising is decreased to O(4J+2j) from O(43J), (j≪J). The experiment results show that the dynamic choice scheme of the external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with the classical interval wavelets numerical methods.
ISSN:2356-6140
1537-744X