New Solitary Wave Solutions of the Lakshamanan–Porsezian–Daniel Model with the Application of the Φ<sup>6</sup> Method in Fractional Sense
This paper explores a significant fractional model, which is the fractional Lakshamanan–Porsezian–Daniel (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">FLPD</mi></se...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/9/1/10 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper explores a significant fractional model, which is the fractional Lakshamanan–Porsezian–Daniel (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">FLPD</mi></semantics></math></inline-formula>) model, widely used in various fields like nonlinear optics and plasma physics. An advanced analytical solution for it is attained by the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Φ</mi><mn>6</mn></msup></semantics></math></inline-formula> technique. According to this methodology, effective and accurate solutions for wave structures within various types can be produced in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">FLPD</mi></semantics></math></inline-formula> model framework. Solutions such as dark, bright, singular, periodic, and plane waves are studied in detail to identify their stability and behavior. Validations are also brought forward to assess the precision and flexibility of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Φ</mi><mn>6</mn></msup></semantics></math></inline-formula> technique in modeling fractional models. Therefore, it is established in this study that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Φ</mi><mn>6</mn></msup></semantics></math></inline-formula> technique represents a powerful tool for examining wave patterns in differential fractional order models. |
---|---|
ISSN: | 2504-3110 |