Disruption of BCAA degradation is a critical characteristic of diabetic cardiomyopathy revealed by integrated transcriptome and metabolome analysis
In this study, we integrated transcriptomic and metabolomic analyses to achieve a comprehensive understanding of the underlying mechanisms of diabetic cardiomyopathy (DCM) in a diabetic rat model. Functional and molecular characterizations revealed significant cardiac injury, dysfunction, and ventri...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2024-12-01
|
Series: | Open Life Sciences |
Subjects: | |
Online Access: | https://doi.org/10.1515/biol-2022-0974 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we integrated transcriptomic and metabolomic analyses to achieve a comprehensive understanding of the underlying mechanisms of diabetic cardiomyopathy (DCM) in a diabetic rat model. Functional and molecular characterizations revealed significant cardiac injury, dysfunction, and ventricular remodeling in DCM. A thorough analysis of global changes in genes and metabolites showed that amino acid metabolism, especially the breakdown of branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine, is highly dysregulated. Furthermore, the study identified the transcription factor Gata3 as a predicted negative regulator of the gene encoding the key enzyme for BCAA degradation. These findings suggest that the disruption of BCAA degradation is a critical characteristic of diabetic myocardial damage and indicate a potential role for Gata3 in the dysregulation of BCAA metabolism in the context of DCM. |
---|---|
ISSN: | 2391-5412 |