Fabrication and Mechanical Properties of Chitosan/FHA Scaffolds
Fluor-hydroxyapatite (FHA) is a biomaterial with dental and orthopedic potential that is highly regarded as a result of bioactivity and high biocompatibility. Chitosan is used as a growth promoting agent in the tissues of the tooth and bone. Composite scaffold from these biomaterials is used as a pa...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-01-01
|
Series: | Advances in Polymer Technology |
Online Access: | http://dx.doi.org/10.1155/2023/2758621 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fluor-hydroxyapatite (FHA) is a biomaterial with dental and orthopedic potential that is highly regarded as a result of bioactivity and high biocompatibility. Chitosan is used as a growth promoting agent in the tissues of the tooth and bone. Composite scaffold from these biomaterials is used as a pattern of natural bone and tooth grafts in tissue engineering. In this study FHA was synthesized through coprecipitation method. Then chitosan/FHA composites with different amounts of FHA (15 and 30 wt%) were prepared via freeze drying way. Structural and physical characteristics of the scaffolds were determined by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) spectra, and morphological properties of the scaffolds were investigated using SEM evaluation. The compressive strength, water-uptake capacity, and biodegradation behavior of scaffolds were performed, as well. The results indicated that chitosan/30%FHA scaffold showed more compressive strength, lower biodegradation in phosphate buffer solution after 4 weeks. Therefore, it might be a suitable scaffold for tooth engineering. |
---|---|
ISSN: | 1098-2329 |