A Best Proximity Point Result in Modular Spaces with the Fatou Property

Consider a nonself-mapping , where is a pair of nonempty subsets of a modular space . A best proximity point of is a point satisfying the condition: . In this paper, we introduce the class of proximal quasicontraction nonself-mappings in modular spaces with the Fatou property. For such mappings,...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed Jleli, Erdal Karapınar, Bessem Samet
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/329451
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566987734122496
author Mohamed Jleli
Erdal Karapınar
Bessem Samet
author_facet Mohamed Jleli
Erdal Karapınar
Bessem Samet
author_sort Mohamed Jleli
collection DOAJ
description Consider a nonself-mapping , where is a pair of nonempty subsets of a modular space . A best proximity point of is a point satisfying the condition: . In this paper, we introduce the class of proximal quasicontraction nonself-mappings in modular spaces with the Fatou property. For such mappings, we provide sufficient conditions assuring the existence and uniqueness of best proximity points.
format Article
id doaj-art-bdac8421cd9e498b80634d169696a791
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-bdac8421cd9e498b80634d169696a7912025-02-03T01:02:40ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/329451329451A Best Proximity Point Result in Modular Spaces with the Fatou PropertyMohamed Jleli0Erdal Karapınar1Bessem Samet2Department of Mathematics, King Saud University, Riyadh, Saudi ArabiaDepartment of Mathematics, Atilim University, Incek, 06836 Ankara, TurkeyDepartment of Mathematics, King Saud University, Riyadh, Saudi ArabiaConsider a nonself-mapping , where is a pair of nonempty subsets of a modular space . A best proximity point of is a point satisfying the condition: . In this paper, we introduce the class of proximal quasicontraction nonself-mappings in modular spaces with the Fatou property. For such mappings, we provide sufficient conditions assuring the existence and uniqueness of best proximity points.http://dx.doi.org/10.1155/2013/329451
spellingShingle Mohamed Jleli
Erdal Karapınar
Bessem Samet
A Best Proximity Point Result in Modular Spaces with the Fatou Property
Abstract and Applied Analysis
title A Best Proximity Point Result in Modular Spaces with the Fatou Property
title_full A Best Proximity Point Result in Modular Spaces with the Fatou Property
title_fullStr A Best Proximity Point Result in Modular Spaces with the Fatou Property
title_full_unstemmed A Best Proximity Point Result in Modular Spaces with the Fatou Property
title_short A Best Proximity Point Result in Modular Spaces with the Fatou Property
title_sort best proximity point result in modular spaces with the fatou property
url http://dx.doi.org/10.1155/2013/329451
work_keys_str_mv AT mohamedjleli abestproximitypointresultinmodularspaceswiththefatouproperty
AT erdalkarapınar abestproximitypointresultinmodularspaceswiththefatouproperty
AT bessemsamet abestproximitypointresultinmodularspaceswiththefatouproperty
AT mohamedjleli bestproximitypointresultinmodularspaceswiththefatouproperty
AT erdalkarapınar bestproximitypointresultinmodularspaceswiththefatouproperty
AT bessemsamet bestproximitypointresultinmodularspaceswiththefatouproperty