Optimizing Text Recognition in Mechanical Drawings: A Comprehensive Approach

The digitalization of engineering drawings is a pivotal step toward automating and improving the efficiency of product design and manufacturing systems (PDMSs). This study presents eDOCr2, a framework that combines traditional OCR and image processing to extract structured information from mechanica...

Full description

Saved in:
Bibliographic Details
Main Authors: Javier Villena Toro, Mehdi Tarkian
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/3/254
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The digitalization of engineering drawings is a pivotal step toward automating and improving the efficiency of product design and manufacturing systems (PDMSs). This study presents eDOCr2, a framework that combines traditional OCR and image processing to extract structured information from mechanical drawings. It segments drawings into key elements—such as information blocks, dimensions, and feature control frames—achieving a text recall of 93.75% and a character error rate (CER) below 1% in a benchmark with drawings from different sources. To improve semantic understanding and reasoning, eDOCr2 integrates Vision Language models (Qwen2-VL-7B and GPT-4o) after segmentation to verify, filter, or retrieve information. This integration enables PDMS applications such as automated design validation, quality control, or manufacturing assessment. The code is available on Github.
ISSN:2075-1702