Atmospheric Variability and Sea-Ice Changes in the Southern Hemisphere

The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (...

Full description

Saved in:
Bibliographic Details
Main Authors: Carlos Diego Gurjão, Luciano Ponzi Pezzi, Claudia Klose Parise, Flávio Barbosa Justino, Camila Bertoletti Carpenedo, Vanúcia Schumacher, Alcimoni Comin
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/3/284
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern Annular Mode (SAM), and Antarctic Dipole (ADP). Using NSIDC satellite-derived sea ice data and ERA5 reanalysis from 1980 to 2022, we analyzed SIC anomalies in the Weddell, Ross, and Bellingshausen and Amundsen (B&A) Seas, assessing their response to climatic forcings across different timescales. Our findings reveal strong linkages between SIC variability and large-scale atmospheric circulation. ENSO-related teleconnections drive a dipolar SIC response, with warming in the Pacific sector and cooling in the Atlantic during El Niño, and the opposite pattern during La Niña. PSA and ADP further modulate this response by altering Rossby wave propagation and heat fluxes, leading to significant SIC fluctuations. The ADP emerges as a dominant driver of interannual SIC anomalies, showing an out-of-phase relationship between the Atlantic and Pacific sectors of the Southern Ocean. Regional SIC trends exhibit contrasting patterns: the Ross Sea shows a significant positive SIC trend, while the B&A and Weddell Seas experience persistent negative anomalies due to enhanced meridional heat transport and stronger westerly winds. SAM strongly influences SIC, particularly in the Atlantic sector, with delayed responses of up to six months, likely due to ice-albedo feedbacks and ocean memory effects. These results enhance our understanding of Antarctic sea ice variability and its sensitivity to large-scale climate oscillations. Given the observed trends and ongoing climate change, further research is needed to assess how these processes will evolve under future warming scenarios. This study highlights the importance of continuous satellite observations and high-resolution climate modeling for improving projections of Antarctic sea ice behavior and its implications for the global climate system.
ISSN:2073-4433