Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction
The cosmic rays differential intensity inside the heliosphere, for energy below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2D (radius and colatitude) Monte Carlo approach for solving the Parker trans...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Advances in Astronomy |
Online Access: | http://dx.doi.org/10.1155/2013/793072 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832549883237629952 |
---|---|
author | P. Bobik G. Boella M. J. Boschini C. Consolandi S. Della Torre M. Gervasi D. Grandi K. Kudela S. Pensotti P. G. Rancoita D. Rozza M. Tacconi |
author_facet | P. Bobik G. Boella M. J. Boschini C. Consolandi S. Della Torre M. Gervasi D. Grandi K. Kudela S. Pensotti P. G. Rancoita D. Rozza M. Tacconi |
author_sort | P. Bobik |
collection | DOAJ |
description | The cosmic rays differential intensity inside the heliosphere, for energy below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2D (radius and colatitude) Monte Carlo approach for solving the Parker transport equation that includes diffusion, convection, magnetic drift, and adiabatic energy loss. Since the whole transport is strongly related to the interplanetary magnetic field (IMF) structure, a better understanding of his description is needed in order to reproduce the cosmic rays intensity at the Earth, as well as outside the ecliptic plane. In this work an interplanetary magnetic field model including the standard description on ecliptic region and a polar correction is presented. This treatment of the IMF, implemented in the HelMod Monte Carlo code (version 2.0), was used to determine the effects on the differential intensity of Proton at 1 AU and allowed one to investigate how latitudinal gradients of proton intensities, observed in the inner heliosphere with the Ulysses spacecraft during 1995, can be affected by the modification of the IMF in the polar regions. |
format | Article |
id | doaj-art-bd68c69fdf6c45d1adea212080c43e3d |
institution | Kabale University |
issn | 1687-7969 1687-7977 |
language | English |
publishDate | 2013-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Astronomy |
spelling | doaj-art-bd68c69fdf6c45d1adea212080c43e3d2025-02-03T06:08:21ZengWileyAdvances in Astronomy1687-79691687-79772013-01-01201310.1155/2013/793072793072Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar CorrectionP. Bobik0G. Boella1M. J. Boschini2C. Consolandi3S. Della Torre4M. Gervasi5D. Grandi6K. Kudela7S. Pensotti8P. G. Rancoita9D. Rozza10M. Tacconi11Institute of Experimental Physics, Watsonova 47, 040 01 Kosice, SlovakiaINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyInstitute of Experimental Physics, Watsonova 47, 040 01 Kosice, SlovakiaINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyINFN Sez. of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, ItalyThe cosmic rays differential intensity inside the heliosphere, for energy below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2D (radius and colatitude) Monte Carlo approach for solving the Parker transport equation that includes diffusion, convection, magnetic drift, and adiabatic energy loss. Since the whole transport is strongly related to the interplanetary magnetic field (IMF) structure, a better understanding of his description is needed in order to reproduce the cosmic rays intensity at the Earth, as well as outside the ecliptic plane. In this work an interplanetary magnetic field model including the standard description on ecliptic region and a polar correction is presented. This treatment of the IMF, implemented in the HelMod Monte Carlo code (version 2.0), was used to determine the effects on the differential intensity of Proton at 1 AU and allowed one to investigate how latitudinal gradients of proton intensities, observed in the inner heliosphere with the Ulysses spacecraft during 1995, can be affected by the modification of the IMF in the polar regions.http://dx.doi.org/10.1155/2013/793072 |
spellingShingle | P. Bobik G. Boella M. J. Boschini C. Consolandi S. Della Torre M. Gervasi D. Grandi K. Kudela S. Pensotti P. G. Rancoita D. Rozza M. Tacconi Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction Advances in Astronomy |
title | Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction |
title_full | Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction |
title_fullStr | Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction |
title_full_unstemmed | Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction |
title_short | Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction |
title_sort | latitudinal dependence of cosmic rays modulation at 1 au and interplanetary magnetic field polar correction |
url | http://dx.doi.org/10.1155/2013/793072 |
work_keys_str_mv | AT pbobik latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT gboella latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT mjboschini latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT cconsolandi latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT sdellatorre latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT mgervasi latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT dgrandi latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT kkudela latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT spensotti latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT pgrancoita latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT drozza latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection AT mtacconi latitudinaldependenceofcosmicraysmodulationat1auandinterplanetarymagneticfieldpolarcorrection |