Contemporary Perspectives on Congestion in Heart Failure: Bridging Classic Signs with Evolving Diagnostic and Therapeutic Strategies
Congestion represents a defining hallmark of heart failure (HF) leading to increased morbidity and mortality in HF patients. While it was traditionally viewed as a simple and uniform state of volume overload, contemporary understanding has emphasized its complexity, distinguishing between intravascu...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Diagnostics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4418/15/9/1083 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Congestion represents a defining hallmark of heart failure (HF) leading to increased morbidity and mortality in HF patients. While it was traditionally viewed as a simple and uniform state of volume overload, contemporary understanding has emphasized its complexity, distinguishing between intravascular, interstitial, and tissue congestion. Congestion contributes to overt clinical manifestation of HF. However, subclinical congestion often goes undetected, increasing the risk of adverse outcomes. Residual congestion, in particular, remains a frequent and challenging issue, with its persistence at discharge being strongly linked to rehospitalization and poor prognosis. Clinical evaluation often fails to reliably identify the resolution of congestion, highlighting the need for supplementary diagnostic methods. Improvement in imaging modalities, including lung ultrasound, venous Doppler, and echocardiography, have significantly enhanced the detection of congestion. Moreover, biomarkers such as natriuretic peptides, bioactive adrenomedullin, soluble CD146, and carbohydrate antigen 125 offer valuable, complementary insights into fluid distribution and the severity of HF congestion. Therefore, a comprehensive, multimodal strategy that integrates clinical evaluation with imaging and biomarker data is crucial for optimizing the management of congestion in HF. Future approaches should prioritize personalized decongestive therapy, addressing both intravascular and tissue congestion, while aiming to preserve renal function and limit neurohormonal activation. Refinement of these strategies holds promise for improving long-term outcomes, reducing rehospitalizations, and enhancing overall patient prognosis. |
|---|---|
| ISSN: | 2075-4418 |