Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements

It will be shown and induced that the d-dimensional indices in the Banach spaces version conditions ∑n(E‖Xn‖p/|nα|p)<∞ are sufficient to yield limmin1≤j≤d(nj)→∞(1/|nα|)∑k≤n∏j=1d(1−(kj−1)/nj)Xk=0 a.s. for arrays of James-type orthogonal random elements. Particularly, it will be shown also that the...

Full description

Saved in:
Bibliographic Details
Main Author: Kuo-Liang Su
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/86909
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551141021319168
author Kuo-Liang Su
author_facet Kuo-Liang Su
author_sort Kuo-Liang Su
collection DOAJ
description It will be shown and induced that the d-dimensional indices in the Banach spaces version conditions ∑n(E‖Xn‖p/|nα|p)<∞ are sufficient to yield limmin1≤j≤d(nj)→∞(1/|nα|)∑k≤n∏j=1d(1−(kj−1)/nj)Xk=0 a.s. for arrays of James-type orthogonal random elements. Particularly, it will be shown also that there are the best possible sufficient conditions for multi-indexed independent real-valued random variables.
format Article
id doaj-art-bd59b6a3456f4b458a923ced08e6da63
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2007-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-bd59b6a3456f4b458a923ced08e6da632025-02-03T06:04:58ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252007-01-01200710.1155/2007/8690986909Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random ElementsKuo-Liang Su0Department of Business, National Open University, Lu Chow 247, Taipei, TaiwanIt will be shown and induced that the d-dimensional indices in the Banach spaces version conditions ∑n(E‖Xn‖p/|nα|p)<∞ are sufficient to yield limmin1≤j≤d(nj)→∞(1/|nα|)∑k≤n∏j=1d(1−(kj−1)/nj)Xk=0 a.s. for arrays of James-type orthogonal random elements. Particularly, it will be shown also that there are the best possible sufficient conditions for multi-indexed independent real-valued random variables.http://dx.doi.org/10.1155/2007/86909
spellingShingle Kuo-Liang Su
Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements
International Journal of Mathematics and Mathematical Sciences
title Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements
title_full Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements
title_fullStr Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements
title_full_unstemmed Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements
title_short Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements
title_sort best possible sufficient conditions for strong law of large numbers for multi indexed orthogonal random elements
url http://dx.doi.org/10.1155/2007/86909
work_keys_str_mv AT kuoliangsu bestpossiblesufficientconditionsforstronglawoflargenumbersformultiindexedorthogonalrandomelements