The PB1 protein of H9N2 influenza A virus inhibits antiviral innate immunity by targeting MAVS for TRIM25-mediated autophagic degradationThe parent data and images support the findings of this work freely available at

The proteins encoded by Influenza A virus (IAV) evade the innate immune system through diverse strategies to facilitate their replication. However, the regulatory mechanisms remain not fully understood. In this study, we identified that the H9N2 PB1 protein suppressed the activities of the IFN-β, IS...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiawei Luo, Yiyuan Lu, Enqi Dai, Nianchun Yin, Ting Wang, Hongxi Qian, Qingrong Jiang, Xin Cao, Chunfeng Wang, Yan Zeng
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Poultry Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0032579124012173
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The proteins encoded by Influenza A virus (IAV) evade the innate immune system through diverse strategies to facilitate their replication. However, the regulatory mechanisms remain not fully understood. In this study, we identified that the H9N2 PB1 protein suppressed the activities of the IFN-β, ISRE, and NF-κB promoters. Furthermore, H9N2 PB1 inhibited the phosphorylation of IRF3, IκBα, and TBK1 and the secretion of IFN-β. The results demonstrated H9N2 PB1 as a negative regulator of the RIG-I signaling pathway. Subsequent investigations revealed a specific interaction between H9N2 PB1 and MAVS, which disturbed the stability of MAVS. Notably, we discovered that H9N2 PB1 exploited the function of TRIM25, leading to the autophagic degradation of MAVS through K48-linked polyubiquitination. In conclusion, we uncovered a negative regulatory axis consisting of H9N2 PB1-TRIM25-MAVS-IFN-I. These findings provide valuable insights into the molecular interactions involved in the regulation of the host's innate immune antiviral response by IAV.
ISSN:0032-5791