Rings decomposed into direct sums of J-rings and nil rings
Let R be a ring (not necessarily with identity) and let E denote the set of idempotents of R. We prove that R is a direct sum of a J-ring (every element is a power of itself) and a nil ring if and only if R is strongly π-regular and E is contained in some J-ideal of R. As a direct consequence of thi...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1985-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171285000230 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let R be a ring (not necessarily with identity) and let E denote the set of idempotents of R. We prove that R is a direct sum of a J-ring (every element is a power of itself) and a nil ring if and only if R is strongly π-regular and E is contained in some J-ideal of R. As a direct consequence of this result, the main theorem of [1] follows. |
---|---|
ISSN: | 0161-1712 1687-0425 |