Exploring the Potential Imaging Biomarkers for Parkinson’s Disease Using Machine Learning Approach

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and neuropsychiatric symptoms resulting from the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). Dopamine transporter scan (DATSCAN), based on single-photon emission computed tomography (S...

Full description

Saved in:
Bibliographic Details
Main Authors: Illia Mushta, Sulev Koks, Anton Popov, Oleksandr Lysenko
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/1/11
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and neuropsychiatric symptoms resulting from the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). Dopamine transporter scan (DATSCAN), based on single-photon emission computed tomography (SPECT), is commonly used to evaluate the loss of dopaminergic neurons in the striatum. This study aims to identify a biomarker from DATSCAN images and develop a machine learning (ML) algorithm for PD diagnosis. Using 13 DATSCAN-derived parameters and patient handedness from 1309 individuals in the Parkinson’s Progression Markers Initiative (PPMI) database, we trained an AdaBoost classifier, achieving an accuracy of 98.88% and an area under the receiver operating characteristic (ROC) curve of 99.81%. To ensure interpretability, we applied the local interpretable model-agnostic explainer (LIME), identifying contralateral putamen SBR as the most predictive feature for distinguishing PD from healthy controls. By focusing on a single biomarker, our approach simplifies PD diagnosis, integrates seamlessly into clinical workflows, and provides interpretable, actionable insights. Although DATSCAN has limitations in detecting early-stage PD, our study demonstrates the potential of ML to enhance diagnostic precision, contributing to improved clinical decision-making and patient outcomes.
ISSN:2306-5354