Some congruence properties of binomial coefficients and linear second order recurrences

Using elementary methods, the following results are obtained:(I) If p is prime, 0≤m≤n, 0<b<apn−m, and p∤ab, then (apnbpm)≡(−1)p−1(apbn−m)(modpn); If r, s are the roots of x2=Ax−B, where (A,B)=1 and D=A2−4B>0, if un=rn−snr−s, vn=rn+sn, and k≥0, then (II) vkpn≡vkpn−1(modpn); (III) If p is odd...

Full description

Saved in:
Bibliographic Details
Main Author: Neville Robbins
Format: Article
Language:English
Published: Wiley 1988-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171288000900
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556773269045248
author Neville Robbins
author_facet Neville Robbins
author_sort Neville Robbins
collection DOAJ
description Using elementary methods, the following results are obtained:(I) If p is prime, 0≤m≤n, 0<b<apn−m, and p∤ab, then (apnbpm)≡(−1)p−1(apbn−m)(modpn); If r, s are the roots of x2=Ax−B, where (A,B)=1 and D=A2−4B>0, if un=rn−snr−s, vn=rn+sn, and k≥0, then (II) vkpn≡vkpn−1(modpn); (III) If p is odd and p∤D, then ukpn≡(Dp)ukpn−1(modpn); (IV) uk2n≡(−1)Buk2n−1(mod2n).
format Article
id doaj-art-bb779df255fd45d5a0caf6156615d70f
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1988-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-bb779df255fd45d5a0caf6156615d70f2025-02-03T05:44:31ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251988-01-0111474375010.1155/S0161171288000900Some congruence properties of binomial coefficients and linear second order recurrencesNeville Robbins0Department of Mathematics, San Francisco State University, San Francisco 94132, CA, USAUsing elementary methods, the following results are obtained:(I) If p is prime, 0≤m≤n, 0<b<apn−m, and p∤ab, then (apnbpm)≡(−1)p−1(apbn−m)(modpn); If r, s are the roots of x2=Ax−B, where (A,B)=1 and D=A2−4B>0, if un=rn−snr−s, vn=rn+sn, and k≥0, then (II) vkpn≡vkpn−1(modpn); (III) If p is odd and p∤D, then ukpn≡(Dp)ukpn−1(modpn); (IV) uk2n≡(−1)Buk2n−1(mod2n).http://dx.doi.org/10.1155/S0161171288000900binomial coefficientlinear second order recurrence.
spellingShingle Neville Robbins
Some congruence properties of binomial coefficients and linear second order recurrences
International Journal of Mathematics and Mathematical Sciences
binomial coefficient
linear second order recurrence.
title Some congruence properties of binomial coefficients and linear second order recurrences
title_full Some congruence properties of binomial coefficients and linear second order recurrences
title_fullStr Some congruence properties of binomial coefficients and linear second order recurrences
title_full_unstemmed Some congruence properties of binomial coefficients and linear second order recurrences
title_short Some congruence properties of binomial coefficients and linear second order recurrences
title_sort some congruence properties of binomial coefficients and linear second order recurrences
topic binomial coefficient
linear second order recurrence.
url http://dx.doi.org/10.1155/S0161171288000900
work_keys_str_mv AT nevillerobbins somecongruencepropertiesofbinomialcoefficientsandlinearsecondorderrecurrences