Marsh Sedimentation Controls Delta Top Morphology, Slope, and Mass Balance

Abstract Rising sea levels, subsidence, and decreased fluvial sediment load threaten river deltas and their wetlands. However, the feedbacks between fluvial and non‐fluvial (marsh) deposition remain weakly constrained. We investigate how non‐riverine, elevation‐controlled deposition typified by mars...

Full description

Saved in:
Bibliographic Details
Main Authors: K. M. Sanks, S. M. Zapp, J. R. Silvestre, J. B. Shaw, R. Dutt, K. M. Straub
Format: Article
Language:English
Published: Wiley 2022-06-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2022GL098513
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Rising sea levels, subsidence, and decreased fluvial sediment load threaten river deltas and their wetlands. However, the feedbacks between fluvial and non‐fluvial (marsh) deposition remain weakly constrained. We investigate how non‐riverine, elevation‐controlled deposition typified by marshes impacts sediment partitioning between a delta's topset, coastal zone, and foreset by comparing a delta experiment with proxy marsh accumulation to a control. Marsh accumulation alters fluvial sediment distribution by decreasing the slope in the marsh window by ∼50%, creating a 78% larger marsh zone. Fluvial incursions into the marsh window trap 1.3 times more clastic volume. The volume exported to deep water remains unchanged. Marsh deposition shifts elevation distributions toward sea level, which produces a hypsometry akin to field‐scale deltas. The elevation‐lowering effect of marshes on an equilibrium delta shown here constitutes an unexplored feedback and an important aspect of coastal sustainability.
ISSN:0094-8276
1944-8007