Long-Term Variability in the Content of Some Metals and Metalloids in <i>Aesculus</i> Flowers: A Four-Year Study Using ICP OES and PCA Analysis
This study investigates the content of some metals and metalloids in the flowers of three <i>Aesculus</i> cultivars (AHP, <i>Aesculus hippocastanum</i> pure species, with white flowers; AHH, <i>Aesculus hippocastanum</i> hybrid species, with pink flowers; and AXC,...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/30/4/908 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates the content of some metals and metalloids in the flowers of three <i>Aesculus</i> cultivars (AHP, <i>Aesculus hippocastanum</i> pure species, with white flowers; AHH, <i>Aesculus hippocastanum</i> hybrid species, with pink flowers; and AXC, <i>Aesculus × carnea</i>, with red flowers) over a four-year period (2016–2019) using inductively coupled plasma optical emission spectrometry (ICP OES) and principal component analysis (PCA). The research focuses on assessing macro- and micro-elemental compositions, identifying variations in mineral uptake, and exploring potential correlations with soil composition. Results highlight significant differences in elemental profiles among the three species, despite similar total ash content. Potassium and phosphorus emerged as dominant macroelements, with AXC showing lower magnesium levels compared to AHP and AHH. Particularly intriguing was the detection of antimony in all cultivars, raising questions about its role and bioaccumulation pathways in floral tissues. Iron and aluminum concentrations varied significantly across species, indicating species-specific metal transport mechanisms. Nickel content showed temporal fluctuations, potentially influenced by climatic conditions and soil properties. PCA revealed distinct clustering patterns, linking elemental concentrations to specific species and years. This comprehensive analysis enhances understanding of metal absorption and distribution in ornamental plants, providing insights into their metabolic processes and potential implications for environmental monitoring and phytoremediation strategies. |
|---|---|
| ISSN: | 1420-3049 |