DOA Estimation Based on Sparse Signal Recovery Utilizing Double-Threshold Sigmoid Penalty

This paper proposes a new algorithm based on sparse signal recovery for estimating the direction of arrival (DOA) of multiple sources. The problem model we build is about the sample covariance matrix fitting by unknown source powers. We enhance the sparsity by the double-threshold sigmoid penalty fu...

Full description

Saved in:
Bibliographic Details
Main Authors: Hanbing Wang, Hui Li, Bin Li
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2015/287915
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new algorithm based on sparse signal recovery for estimating the direction of arrival (DOA) of multiple sources. The problem model we build is about the sample covariance matrix fitting by unknown source powers. We enhance the sparsity by the double-threshold sigmoid penalty function which can approximate the l0 norm accurately. Our method can distinguish closely spaced sources and does not need the knowledge of the number of the sources. In addition, our method can also perform well in low SNR. Besides, our method can handle more sources accurately than other methods. Simulations are done to certify the great performance of the proposed method.
ISSN:2090-0147
2090-0155