On Edge Magic Total Labeling of (7, 3)-Cycle Books
A graph G is called (a, b)-cycle books B[(Ca, m), (Cb, n), Pt] if G consists of m cycles Ca and n cycles Cb with a common path Pt. In this article we show that the (7, 3)-cycle books B[(C7, 1), (C3, n), P2] admits edge-magic total labeling. In addition we prove that (a, 3)-cycle books B[(Ca, 1), (C3...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2019/1801925 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832563799462248448 |
---|---|
author | Baki Swita Ulfasari Rafflesia Nova Henni Ms Dolly Stio Adji Mudin Simanihuruk |
author_facet | Baki Swita Ulfasari Rafflesia Nova Henni Ms Dolly Stio Adji Mudin Simanihuruk |
author_sort | Baki Swita |
collection | DOAJ |
description | A graph G is called (a, b)-cycle books B[(Ca, m), (Cb, n), Pt] if G consists of m cycles Ca and n cycles Cb with a common path Pt. In this article we show that the (7, 3)-cycle books B[(C7, 1), (C3, n), P2] admits edge-magic total labeling. In addition we prove that (a, 3)-cycle books B[(Ca, 1), (C3, n), P2] admits super edge-magic total labeling for a = 7 and extends the values of a to 4x − 1 for any positive integer x. Moreover we prove that the (7, 3)-cycle books B[(C7, 2), (C3, n), P2] admits super edge-magic total labeling. |
format | Article |
id | doaj-art-ba0c9407f39e41eab0f7f38f1e5099e9 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2019-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-ba0c9407f39e41eab0f7f38f1e5099e92025-02-03T01:12:37ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252019-01-01201910.1155/2019/18019251801925On Edge Magic Total Labeling of (7, 3)-Cycle BooksBaki Swita0Ulfasari Rafflesia1Nova Henni Ms2Dolly Stio Adji3Mudin Simanihuruk4Department Mathematics, Bengkulu University, Jalan W.R.Supratman, Kandanglimun, 38371, IndonesiaDepartment Mathematics, Bengkulu University, Jalan W.R.Supratman, Kandanglimun, 38371, IndonesiaDepartment Mathematics, Bengkulu University, Jalan W.R.Supratman, Kandanglimun, 38371, IndonesiaDepartment Mathematics, Bengkulu University, Jalan W.R.Supratman, Kandanglimun, 38371, IndonesiaDepartment Mathematics, Bengkulu University, Jalan W.R.Supratman, Kandanglimun, 38371, IndonesiaA graph G is called (a, b)-cycle books B[(Ca, m), (Cb, n), Pt] if G consists of m cycles Ca and n cycles Cb with a common path Pt. In this article we show that the (7, 3)-cycle books B[(C7, 1), (C3, n), P2] admits edge-magic total labeling. In addition we prove that (a, 3)-cycle books B[(Ca, 1), (C3, n), P2] admits super edge-magic total labeling for a = 7 and extends the values of a to 4x − 1 for any positive integer x. Moreover we prove that the (7, 3)-cycle books B[(C7, 2), (C3, n), P2] admits super edge-magic total labeling.http://dx.doi.org/10.1155/2019/1801925 |
spellingShingle | Baki Swita Ulfasari Rafflesia Nova Henni Ms Dolly Stio Adji Mudin Simanihuruk On Edge Magic Total Labeling of (7, 3)-Cycle Books International Journal of Mathematics and Mathematical Sciences |
title | On Edge Magic Total Labeling of (7, 3)-Cycle Books |
title_full | On Edge Magic Total Labeling of (7, 3)-Cycle Books |
title_fullStr | On Edge Magic Total Labeling of (7, 3)-Cycle Books |
title_full_unstemmed | On Edge Magic Total Labeling of (7, 3)-Cycle Books |
title_short | On Edge Magic Total Labeling of (7, 3)-Cycle Books |
title_sort | on edge magic total labeling of 7 3 cycle books |
url | http://dx.doi.org/10.1155/2019/1801925 |
work_keys_str_mv | AT bakiswita onedgemagictotallabelingof73cyclebooks AT ulfasarirafflesia onedgemagictotallabelingof73cyclebooks AT novahennims onedgemagictotallabelingof73cyclebooks AT dollystioadji onedgemagictotallabelingof73cyclebooks AT mudinsimanihuruk onedgemagictotallabelingof73cyclebooks |