Polynomials in Control Theory Parametrized by Their Roots

The aim of this paper is to introduce the space of roots to study the topological properties of the spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its coefficients, we identify it with the set of its roots. Viète's map gives a homeomorphism between t...

Full description

Saved in:
Bibliographic Details
Main Authors: Baltazar Aguirre-Hernández, José Luis Cisneros-Molina, Martín-Eduardo Frías-Armenta
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/595076
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552041680994304
author Baltazar Aguirre-Hernández
José Luis Cisneros-Molina
Martín-Eduardo Frías-Armenta
author_facet Baltazar Aguirre-Hernández
José Luis Cisneros-Molina
Martín-Eduardo Frías-Armenta
author_sort Baltazar Aguirre-Hernández
collection DOAJ
description The aim of this paper is to introduce the space of roots to study the topological properties of the spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its coefficients, we identify it with the set of its roots. Viète's map gives a homeomorphism between the space of roots and the space of coefficients and it gives an explicit formula to relate both spaces. Using this viewpoint we establish that the space of monic (Schur or Hurwitz) aperiodic polynomials is contractible. Additionally we obtain a Boundary Theorem.
format Article
id doaj-art-ba06a8cb1d9c465990652b1f0beee00d
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-ba06a8cb1d9c465990652b1f0beee00d2025-02-03T05:59:46ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/595076595076Polynomials in Control Theory Parametrized by Their RootsBaltazar Aguirre-Hernández0José Luis Cisneros-Molina1Martín-Eduardo Frías-Armenta2Departamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco no. 186, Colonia Vicentina, 09340 Mexico, DF, MexicoInstituto de Matemáticas, Unidad Cuernavaca, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Lomas de Chamilpa, 62210 Cuernavaca, MOR, MexicoDepartamento de Matemáticas, División de Ciencias Exactas, Universidad de Sonora, Boulevard Luis Encinas y Rosales s/n, Colonia Centro, 83000 Hermosillo, SON, MexicoThe aim of this paper is to introduce the space of roots to study the topological properties of the spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its coefficients, we identify it with the set of its roots. Viète's map gives a homeomorphism between the space of roots and the space of coefficients and it gives an explicit formula to relate both spaces. Using this viewpoint we establish that the space of monic (Schur or Hurwitz) aperiodic polynomials is contractible. Additionally we obtain a Boundary Theorem.http://dx.doi.org/10.1155/2012/595076
spellingShingle Baltazar Aguirre-Hernández
José Luis Cisneros-Molina
Martín-Eduardo Frías-Armenta
Polynomials in Control Theory Parametrized by Their Roots
International Journal of Mathematics and Mathematical Sciences
title Polynomials in Control Theory Parametrized by Their Roots
title_full Polynomials in Control Theory Parametrized by Their Roots
title_fullStr Polynomials in Control Theory Parametrized by Their Roots
title_full_unstemmed Polynomials in Control Theory Parametrized by Their Roots
title_short Polynomials in Control Theory Parametrized by Their Roots
title_sort polynomials in control theory parametrized by their roots
url http://dx.doi.org/10.1155/2012/595076
work_keys_str_mv AT baltazaraguirrehernandez polynomialsincontroltheoryparametrizedbytheirroots
AT joseluiscisnerosmolina polynomialsincontroltheoryparametrizedbytheirroots
AT martineduardofriasarmenta polynomialsincontroltheoryparametrizedbytheirroots