A note on monotonicity property of Bessel functions

A theorem of Lorch, Muldoon and Szegö states that the sequence {∫jα,kjα,k+1t−α|Jα(t)|dt}k=1∞ is decreasing for α>−1/2, where Jα(t) the Bessel function of the first kind order α and jα,k its kth positive root. This monotonicity property implies Szegö's inequality ∫0xt−αJα(t)dt≥0, when α≥α′ an...

Full description

Saved in:
Bibliographic Details
Main Author: Stamatis Koumandos
Format: Article
Language:English
Published: Wiley 1997-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171297000756
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562762277978112
author Stamatis Koumandos
author_facet Stamatis Koumandos
author_sort Stamatis Koumandos
collection DOAJ
description A theorem of Lorch, Muldoon and Szegö states that the sequence {∫jα,kjα,k+1t−α|Jα(t)|dt}k=1∞ is decreasing for α>−1/2, where Jα(t) the Bessel function of the first kind order α and jα,k its kth positive root. This monotonicity property implies Szegö's inequality ∫0xt−αJα(t)dt≥0, when α≥α′ and α′ is the unique solution of ∫0jα,2t−αJα(t)dt=0.
format Article
id doaj-art-b9e9b54013504260a7c695a370180c0c
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1997-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-b9e9b54013504260a7c695a370180c0c2025-02-03T01:21:48ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251997-01-0120356156610.1155/S0161171297000756A note on monotonicity property of Bessel functionsStamatis Koumandos0Department of Pure Mathematics, The University of Adelaide, Adelaide 5005, AustraliaA theorem of Lorch, Muldoon and Szegö states that the sequence {∫jα,kjα,k+1t−α|Jα(t)|dt}k=1∞ is decreasing for α>−1/2, where Jα(t) the Bessel function of the first kind order α and jα,k its kth positive root. This monotonicity property implies Szegö's inequality ∫0xt−αJα(t)dt≥0, when α≥α′ and α′ is the unique solution of ∫0jα,2t−αJα(t)dt=0.http://dx.doi.org/10.1155/S0161171297000756Bessel functionspositive integral of Besel functionsmonotonicity property of Bessel functions.
spellingShingle Stamatis Koumandos
A note on monotonicity property of Bessel functions
International Journal of Mathematics and Mathematical Sciences
Bessel functions
positive integral of Besel functions
monotonicity property of Bessel functions.
title A note on monotonicity property of Bessel functions
title_full A note on monotonicity property of Bessel functions
title_fullStr A note on monotonicity property of Bessel functions
title_full_unstemmed A note on monotonicity property of Bessel functions
title_short A note on monotonicity property of Bessel functions
title_sort note on monotonicity property of bessel functions
topic Bessel functions
positive integral of Besel functions
monotonicity property of Bessel functions.
url http://dx.doi.org/10.1155/S0161171297000756
work_keys_str_mv AT stamatiskoumandos anoteonmonotonicitypropertyofbesselfunctions
AT stamatiskoumandos noteonmonotonicitypropertyofbesselfunctions