Rapid Mapping and Deformation Analysis over Cultural Heritage and Rural Sites Based on Persistent Scatterer Interferometry

We propose an easy-to-use procedure of “PSI-based rapid mapping and deformation analysis,” to effectively exploit Persistent Scatterer Interferometry (PSI) for multispatial/temporal hazard assessment of cultural heritage and rural sites, update the condition report at the scale of entire site and si...

Full description

Saved in:
Bibliographic Details
Main Authors: D. Tapete, F. Cigna
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Geophysics
Online Access:http://dx.doi.org/10.1155/2012/618609
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose an easy-to-use procedure of “PSI-based rapid mapping and deformation analysis,” to effectively exploit Persistent Scatterer Interferometry (PSI) for multispatial/temporal hazard assessment of cultural heritage and rural sites, update the condition report at the scale of entire site and single building, and address the conservation strategies. Advantages and drawbacks of the methodology are critically discussed based on feasibility tests performed over Pitigliano and Bivigliano, respectively, located in Southern and Northern Tuscany, Italy, and representative of hilltop historic towns and countryside settlements chronically affected by natural hazards. We radar-interpreted ERS-1/2 (1992–2000) and ENVISAT (2003–2010) datasets, already processed, respectively with the Permanent Scatterers (PSs) and Persistent Scatterers Pairs (PSPs) techniques, and assigned the levels of conservation criticality for both the sites. The PSI analysis allowed the zoning of the most unstable sectors of Pitigliano and showed a good agreement with the most updated hazard assessment of the cliff. The reconstruction of past/recent deformation patterns over Bivigliano confirmed the criticality for the Church of San Romolo, supporting the hypothesis of a correlation with local landslide phenomena, as also perceived from the annual motions observed over the entire site, where several landslide bodies are mapped.
ISSN:1687-885X
1687-8868