Research on the Feature Selection of Rolling Bearings’ Degradation Features

The bearings’ degradation features are crucial to assess the performance degradation and predict the remaining useful life of rolling bearings. So far, numerous degradation features have been proposed. Many researchers have devoted to use dimensionality reduction methods to reduce the redundancy of...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaolong Li, Hongru Li, Bing Wang, He Yu, Weiguo Wang
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/6450719
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The bearings’ degradation features are crucial to assess the performance degradation and predict the remaining useful life of rolling bearings. So far, numerous degradation features have been proposed. Many researchers have devoted to use dimensionality reduction methods to reduce the redundancy of those features. However, they have not considered the properties and similarity of those features. In this paper, we present a simple way to reduce dimensionality by classifying different features based on their trends. And the degradation features can be classified into two subdivisions, namely, uptrends and downtrends. In each subdivision, there exists visible trend similarity, and we have introduced two indexes to measure this similarity. By selecting the representative features of the subdivision, the multifeatures can be dimensionality reduced. Through the comparison, the root mean square and sample entropy are two good representatives of uptrend and downtrend features. This method gives an alternative way for dimensionality reduction of the rolling bearings’ degradation features.
ISSN:1070-9622
1875-9203