Research on the Feature Selection of Rolling Bearings’ Degradation Features
The bearings’ degradation features are crucial to assess the performance degradation and predict the remaining useful life of rolling bearings. So far, numerous degradation features have been proposed. Many researchers have devoted to use dimensionality reduction methods to reduce the redundancy of...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2019/6450719 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bearings’ degradation features are crucial to assess the performance degradation and predict the remaining useful life of rolling bearings. So far, numerous degradation features have been proposed. Many researchers have devoted to use dimensionality reduction methods to reduce the redundancy of those features. However, they have not considered the properties and similarity of those features. In this paper, we present a simple way to reduce dimensionality by classifying different features based on their trends. And the degradation features can be classified into two subdivisions, namely, uptrends and downtrends. In each subdivision, there exists visible trend similarity, and we have introduced two indexes to measure this similarity. By selecting the representative features of the subdivision, the multifeatures can be dimensionality reduced. Through the comparison, the root mean square and sample entropy are two good representatives of uptrend and downtrend features. This method gives an alternative way for dimensionality reduction of the rolling bearings’ degradation features. |
---|---|
ISSN: | 1070-9622 1875-9203 |