Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces

We study asymptotic behavior in time of global small solutions to the quadratic nonlinear Schrödinger equation in two-dimensional spaces i∂tu+(1/2)Δu=𝒩(u), (t,x)∈ℝ×ℝ2;u(0,x)=φ(x), x∈ℝ2, where 𝒩(u)=Σj,k=12(λjk(∂xju)(∂xku)+μjk(∂xju¯)(∂xku¯)), where λjk,μjk∈ℂ. We prove that if t...

Full description

Saved in:
Bibliographic Details
Main Authors: Nakao Hayashi, Pavel I. Naumkin
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202007652
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560275219283968
author Nakao Hayashi
Pavel I. Naumkin
author_facet Nakao Hayashi
Pavel I. Naumkin
author_sort Nakao Hayashi
collection DOAJ
description We study asymptotic behavior in time of global small solutions to the quadratic nonlinear Schrödinger equation in two-dimensional spaces i∂tu+(1/2)Δu=𝒩(u), (t,x)∈ℝ×ℝ2;u(0,x)=φ(x), x∈ℝ2, where 𝒩(u)=Σj,k=12(λjk(∂xju)(∂xku)+μjk(∂xju¯)(∂xku¯)), where λjk,μjk∈ℂ. We prove that if the initial data φ satisfy some analyticity and smallness conditions in a suitable norm, then the solution of the above Cauchy problem has the asymptotic representation in the neighborhood of the scattering states.
format Article
id doaj-art-b946e3f6d5f647b4993456bffbbc681c
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2002-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-b946e3f6d5f647b4993456bffbbc681c2025-02-03T01:28:05ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252002-01-0129950151610.1155/S0161171202007652Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spacesNakao Hayashi0Pavel I. Naumkin1Department of Mathematics, Graduate School of Science, Osaka University, Osaka 560-0043, JapanInstituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia, Michoacán CP 58089, MexicoWe study asymptotic behavior in time of global small solutions to the quadratic nonlinear Schrödinger equation in two-dimensional spaces i∂tu+(1/2)Δu=𝒩(u), (t,x)∈ℝ×ℝ2;u(0,x)=φ(x), x∈ℝ2, where 𝒩(u)=Σj,k=12(λjk(∂xju)(∂xku)+μjk(∂xju¯)(∂xku¯)), where λjk,μjk∈ℂ. We prove that if the initial data φ satisfy some analyticity and smallness conditions in a suitable norm, then the solution of the above Cauchy problem has the asymptotic representation in the neighborhood of the scattering states.http://dx.doi.org/10.1155/S0161171202007652
spellingShingle Nakao Hayashi
Pavel I. Naumkin
Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces
International Journal of Mathematics and Mathematical Sciences
title Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces
title_full Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces
title_fullStr Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces
title_full_unstemmed Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces
title_short Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces
title_sort asymptotic expansion of small analytic solutions to the quadratic nonlinear schrodinger equations in two dimensional spaces
url http://dx.doi.org/10.1155/S0161171202007652
work_keys_str_mv AT nakaohayashi asymptoticexpansionofsmallanalyticsolutionstothequadraticnonlinearschrodingerequationsintwodimensionalspaces
AT pavelinaumkin asymptoticexpansionofsmallanalyticsolutionstothequadraticnonlinearschrodingerequationsintwodimensionalspaces