A simple and industrially scalable process for recycling hexaferrite ceramic magnets
The demand for hexaferrite (BaFe12O19/SrFe12O19) permanent magnets is expected to rise in the next 5–10 years due to their potential as a sustainable alternative to rare-earth magnets. Currently, less than 1 % of recycling of permanent magnets occurs worldwide. This study presents a successful metho...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-03-01
|
| Series: | Open Ceramics |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666539524001883 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The demand for hexaferrite (BaFe12O19/SrFe12O19) permanent magnets is expected to rise in the next 5–10 years due to their potential as a sustainable alternative to rare-earth magnets. Currently, less than 1 % of recycling of permanent magnets occurs worldwide. This study presents a successful method for recycling strontium ferrite magnets from end-of-life household appliances, fabricating recycled bonded magnets as a first step to implement a circular economy in the value chain. This industrially scalable method optimizes comminution and annealing of recovered ceramic magnets, yielding powders with particle sizes below 2 µm. Thermal treatment at 900–1000 °C recovers competitive magnetic properties. A pilot batch of recycled hexaferrite bonded magnets, produced via injection moulding, exhibited excellent mechanical and magnetic properties, with coercivity Hcj of 190.1 kA/m, remanent polarization Jr of 234.3 mT, and maximum energy product (BH)max of 10.4 kJ/m³, comparable to commercial ferrite bonded magnets. |
|---|---|
| ISSN: | 2666-5395 |