Revisiting the Group Classification of the General Nonlinear Heat Equation <i>u<sub>t</sub></i> = (<i>K</i>(<i>u</i>)<i>u<sub>x</sub></i>)<i><sub>x</sub></i>
Group classification is a powerful tool for identifying and selecting the free elements—functions or parameters—in partial differential equations (PDEs) that maximize the symmetry properties of the model. In this paper, we revisit the group classification of the general nonlinear heat (or diffusion)...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/6/911 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Group classification is a powerful tool for identifying and selecting the free elements—functions or parameters—in partial differential equations (PDEs) that maximize the symmetry properties of the model. In this paper, we revisit the group classification of the general nonlinear heat (or diffusion) equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>t</mi></msub><mo>=</mo><msub><mfenced separators="" open="(" close=")"><mi>K</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace width="0.166667em"></mspace><msub><mi>u</mi><mi>x</mi></msub></mfenced><mi>x</mi></msub><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a non-constant function of the dependent variable. We present the group classification framework, derive the determining equations for the coefficients of the infinitesimal generators of the admitted symmetry groups, and systematically solve for admissible forms of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Our analysis recovers the classical results of Ovsyannikov and Bluman and provides additional clarity and detailed derivations. The classification yields multiple cases, each corresponding to a specific form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and reveals the dimension of the associated Lie symmetry algebra. |
|---|---|
| ISSN: | 2227-7390 |