DSCONV-GAN: a UAV-BASED model for Verticillium Wilt disease detection in Chinese cabbage in complex growing environments

Abstract Verticillium wilt greatly hampers Chinese cabbage growth, causing significant yield limitations. Rapid and accurate detection of Verticillium wilt in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) can provide significant agronomic benefits. Here, we propose a detection model, DSConv...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Zhang, Dongfang Zhang, Jingyan Liu, Yuhong Zhou, Xiaoshuo Cui, Xiaofei Fan
Format: Article
Language:English
Published: BMC 2024-12-01
Series:Plant Methods
Subjects:
Online Access:https://doi.org/10.1186/s13007-024-01303-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Verticillium wilt greatly hampers Chinese cabbage growth, causing significant yield limitations. Rapid and accurate detection of Verticillium wilt in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) can provide significant agronomic benefits. Here, we propose a detection model, DSConv-GAN, which is based on images acquired by an unmanned aerial vehicle (UAV). Based on YOLOv8, with the addition of the dynamic snake convolution (DSConv) module and the improved loss function maximum possible distance intersection-over-union (MPDIoU), we acquired enhanced complex structures and global characteristics in Chinese cabbage images under different growth conditions. To reduce the difficulty of acquiring diseased Chinese cabbage data, a cycle-consistent generative adversarial network (CycleGAN) was used to simulate and generate images of the Verticillium wilt characteristics for multiple fields. The detection of lightly infected plants achieved precision, recall, mean average precision (mAP), and F1-score of 81.3, 86.6, 87.7, and 83.9%, respectively. DSConv-GAN outperforms other models in terms of precision, detection speed, robustness, and generalization. The model is combined with software to improve the practicability of the proposed method. Our results demonstrate DSConv-GAN to be an effective intelligent farming tool that provides early, rapid, and accurate detection of Chinese cabbage Verticillium wilt in complex growing environments.
ISSN:1746-4811