On Uniqueness of New Orthogonality via 2-HH Norm in Normed Linear Space

This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only i...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhuwan Prasad Ojha, Prakash Muni Bajracharya, Vishnu Narayan Mishra
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/8835492
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.
ISSN:2314-8896
2314-8888