A Multi-Model Machine Learning Framework for Identifying Raloxifene as a Novel RNA Polymerase Inhibitor from FDA-Approved Drugs

RNA-dependent RNA polymerase (RdRP) represents a critical target for antiviral drug development. We developed a multi-model machine learning framework combining five traditional algorithms (ExtraTreesClassifier, RandomForestClassifier, LGBMClassifier, BernoulliNB, and BaggingClassifier) with a CNN d...

Full description

Saved in:
Bibliographic Details
Main Authors: Nhung Thi Hong Van, Minh Tuan Nguyen
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Current Issues in Molecular Biology
Subjects:
Online Access:https://www.mdpi.com/1467-3045/47/5/315
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RNA-dependent RNA polymerase (RdRP) represents a critical target for antiviral drug development. We developed a multi-model machine learning framework combining five traditional algorithms (ExtraTreesClassifier, RandomForestClassifier, LGBMClassifier, BernoulliNB, and BaggingClassifier) with a CNN deep learning model to identify potential RdRP inhibitors among FDA-approved drugs. Using the PubChem dataset AID 588519, our ensemble models achieved the highest performance with accuracy, ROC-AUC, and F1 scores higher than 0.70, while the CNN model demonstrated complementary predictive value with a specificity of 0.77 on external validation. Molecular docking studies with the norovirus RdRP (PDB: 4NRT) identified raloxifene as a promising candidate, with a binding affinity (−8.8 kcal/mol) comparable to the positive control (−9.2 kcal/mol). The molecular dynamics simulation confirmed stable binding with RMSD values of 0.12–0.15 nm for the protein–ligand complex and consistent hydrogen bonding patterns. Our findings suggest that raloxifene may possess RdRP inhibitory activity, providing a foundation for its experimental validation as a potential broad-spectrum antiviral agent.
ISSN:1467-3037
1467-3045