A Multi-Model Machine Learning Framework for Identifying Raloxifene as a Novel RNA Polymerase Inhibitor from FDA-Approved Drugs
RNA-dependent RNA polymerase (RdRP) represents a critical target for antiviral drug development. We developed a multi-model machine learning framework combining five traditional algorithms (ExtraTreesClassifier, RandomForestClassifier, LGBMClassifier, BernoulliNB, and BaggingClassifier) with a CNN d...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Current Issues in Molecular Biology |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1467-3045/47/5/315 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | RNA-dependent RNA polymerase (RdRP) represents a critical target for antiviral drug development. We developed a multi-model machine learning framework combining five traditional algorithms (ExtraTreesClassifier, RandomForestClassifier, LGBMClassifier, BernoulliNB, and BaggingClassifier) with a CNN deep learning model to identify potential RdRP inhibitors among FDA-approved drugs. Using the PubChem dataset AID 588519, our ensemble models achieved the highest performance with accuracy, ROC-AUC, and F1 scores higher than 0.70, while the CNN model demonstrated complementary predictive value with a specificity of 0.77 on external validation. Molecular docking studies with the norovirus RdRP (PDB: 4NRT) identified raloxifene as a promising candidate, with a binding affinity (−8.8 kcal/mol) comparable to the positive control (−9.2 kcal/mol). The molecular dynamics simulation confirmed stable binding with RMSD values of 0.12–0.15 nm for the protein–ligand complex and consistent hydrogen bonding patterns. Our findings suggest that raloxifene may possess RdRP inhibitory activity, providing a foundation for its experimental validation as a potential broad-spectrum antiviral agent. |
|---|---|
| ISSN: | 1467-3037 1467-3045 |