Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations
<p>We use 2021 TROPOMI and GOSAT satellite observations of atmospheric methane in an analytical inversion to quantify national methane emissions from South America at up to 25 km <span class="inline-formula">×</span> 25 km resolution. From the inversion, we derive optimal...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2025-01-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832592168431124480 |
---|---|
author | S. E. Hancock D. J. Jacob Z. Chen H. Nesser A. Davitt A. Davitt D. J. Varon M. P. Sulprizio N. Balasus L. A. Estrada M. Cazorla L. Dawidowski S. Diez J. D. East E. Penn C. A. Randles C. A. Randles J. Worden I. Aben R. J. Parker R. J. Parker J. D. Maasakkers |
author_facet | S. E. Hancock D. J. Jacob Z. Chen H. Nesser A. Davitt A. Davitt D. J. Varon M. P. Sulprizio N. Balasus L. A. Estrada M. Cazorla L. Dawidowski S. Diez J. D. East E. Penn C. A. Randles C. A. Randles J. Worden I. Aben R. J. Parker R. J. Parker J. D. Maasakkers |
author_sort | S. E. Hancock |
collection | DOAJ |
description | <p>We use 2021 TROPOMI and GOSAT satellite observations of atmospheric methane in an analytical inversion to quantify national methane emissions from South America at up to 25 km <span class="inline-formula">×</span> 25 km resolution. From the inversion, we derive optimal posterior estimates of methane emissions, adjusting a combination of national anthropogenic emission inventories reported by individual countries to the United Nations Framework Convention on Climate Change (UNFCCC), the UNFCCC-based Global Fuel Exploitation Inventory (GFEIv2), and the Emissions Database for Global Atmospheric Research (EDGARv7) as prior estimates. We also evaluate two alternative wetland emission inventories (WetCHARTs and LPJ-wsl) as prior estimates. Our best posterior estimates for wetland emissions are consistent with previous inventories for the Amazon but lower for the Pantanal and higher for the Paraná. Our best posterior estimate of South American anthropogenic emissions is 48 (41–56) Tg a<span class="inline-formula"><sup>−1</sup></span>, where numbers in parentheses are the range from our inversion ensemble. This is 55 % higher than our prior estimate and is dominated by livestock (65 % of anthropogenic total). We find that TROPOMI and GOSAT observations can effectively optimize and separate national emissions by sector for 10 of the 13 countries and territories in the region, 7 of which account for 93 % of continental anthropogenic emissions: Brazil (19 (16–23) Tg a<span class="inline-formula"><sup>−1</sup></span>), Argentina (9.2 (7.9–11) Tg a<span class="inline-formula"><sup>−1</sup></span>), Venezuela (7.0 (5.5–9.9) Tg a<span class="inline-formula"><sup>−1</sup></span>), Colombia (5.0 (4.4–6.7) Tg a<span class="inline-formula"><sup>−1</sup></span>), Peru (2.4 (1.6–3.9) Tg a<span class="inline-formula"><sup>−1</sup></span>), Bolivia (0.96 (0.66–1.2) Tg a<span class="inline-formula"><sup>−1</sup></span>), and Paraguay (0.93 (0.88–1.0) Tg a<span class="inline-formula"><sup>−1</sup></span>). Our estimates align with the prior estimates for Brazil, Bolivia, and Paraguay but are significantly higher for other countries. Emissions in all countries are dominated by livestock (mainly enteric fermentation) except for oil–gas in Venezuela and landfills in Peru. Methane intensities from the oil–gas industry are high in Venezuela (33 %), Colombia (6.5 %), and Argentina (5.9 %). The livestock sector shows the largest difference<span id="page798"/> between our top-down estimate and the UNFCCC prior estimates, and even countries using complex bottom-up methods report UNFCCC emissions significantly lower than our posterior estimate. These discrepancies could stem from underestimations in IPCC-recommended bottom-up calculations or uncertainties in the inversion from aggregation error and the prior spatial distribution of emissions.</p> |
format | Article |
id | doaj-art-b7955c3712ad4356b55bfc33e91eb544 |
institution | Kabale University |
issn | 1680-7316 1680-7324 |
language | English |
publishDate | 2025-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj-art-b7955c3712ad4356b55bfc33e91eb5442025-01-21T14:26:12ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-01-012579781710.5194/acp-25-797-2025Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observationsS. E. Hancock0D. J. Jacob1Z. Chen2H. Nesser3A. Davitt4A. Davitt5D. J. Varon6M. P. Sulprizio7N. Balasus8L. A. Estrada9M. Cazorla10L. Dawidowski11S. Diez12J. D. East13E. Penn14C. A. Randles15C. A. Randles16J. Worden17I. Aben18R. J. Parker19R. J. Parker20J. D. Maasakkers21School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USAWattTime, Oakland, CA 94612, USAClimate TRACE, Denver, CO 80022, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USAInstituto de Investigaciones Atmosféricas, Universidad San Francisco de Quito USFQ, Quito, 170157, EcuadorGerencia Química, Comisión Nacional de Energía Atómica, San Martin, B1650KNA, Buenos Aires, ArgentinaCentro de Investigación en Tecnologías para la Sociedad, Universidad del Desarrollo, Santiago, 7550000, ChileSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USAUnited Nations Environment Program International Methane Emissions Observatory, Paris, Francenow at: Scepter, Inc., San Francisco, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USASRON Netherlands Institute for Space Research, Leiden, the NetherlandsNational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKSRON Netherlands Institute for Space Research, Leiden, the Netherlands<p>We use 2021 TROPOMI and GOSAT satellite observations of atmospheric methane in an analytical inversion to quantify national methane emissions from South America at up to 25 km <span class="inline-formula">×</span> 25 km resolution. From the inversion, we derive optimal posterior estimates of methane emissions, adjusting a combination of national anthropogenic emission inventories reported by individual countries to the United Nations Framework Convention on Climate Change (UNFCCC), the UNFCCC-based Global Fuel Exploitation Inventory (GFEIv2), and the Emissions Database for Global Atmospheric Research (EDGARv7) as prior estimates. We also evaluate two alternative wetland emission inventories (WetCHARTs and LPJ-wsl) as prior estimates. Our best posterior estimates for wetland emissions are consistent with previous inventories for the Amazon but lower for the Pantanal and higher for the Paraná. Our best posterior estimate of South American anthropogenic emissions is 48 (41–56) Tg a<span class="inline-formula"><sup>−1</sup></span>, where numbers in parentheses are the range from our inversion ensemble. This is 55 % higher than our prior estimate and is dominated by livestock (65 % of anthropogenic total). We find that TROPOMI and GOSAT observations can effectively optimize and separate national emissions by sector for 10 of the 13 countries and territories in the region, 7 of which account for 93 % of continental anthropogenic emissions: Brazil (19 (16–23) Tg a<span class="inline-formula"><sup>−1</sup></span>), Argentina (9.2 (7.9–11) Tg a<span class="inline-formula"><sup>−1</sup></span>), Venezuela (7.0 (5.5–9.9) Tg a<span class="inline-formula"><sup>−1</sup></span>), Colombia (5.0 (4.4–6.7) Tg a<span class="inline-formula"><sup>−1</sup></span>), Peru (2.4 (1.6–3.9) Tg a<span class="inline-formula"><sup>−1</sup></span>), Bolivia (0.96 (0.66–1.2) Tg a<span class="inline-formula"><sup>−1</sup></span>), and Paraguay (0.93 (0.88–1.0) Tg a<span class="inline-formula"><sup>−1</sup></span>). Our estimates align with the prior estimates for Brazil, Bolivia, and Paraguay but are significantly higher for other countries. Emissions in all countries are dominated by livestock (mainly enteric fermentation) except for oil–gas in Venezuela and landfills in Peru. Methane intensities from the oil–gas industry are high in Venezuela (33 %), Colombia (6.5 %), and Argentina (5.9 %). The livestock sector shows the largest difference<span id="page798"/> between our top-down estimate and the UNFCCC prior estimates, and even countries using complex bottom-up methods report UNFCCC emissions significantly lower than our posterior estimate. These discrepancies could stem from underestimations in IPCC-recommended bottom-up calculations or uncertainties in the inversion from aggregation error and the prior spatial distribution of emissions.</p>https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025.pdf |
spellingShingle | S. E. Hancock D. J. Jacob Z. Chen H. Nesser A. Davitt A. Davitt D. J. Varon M. P. Sulprizio N. Balasus L. A. Estrada M. Cazorla L. Dawidowski S. Diez J. D. East E. Penn C. A. Randles C. A. Randles J. Worden I. Aben R. J. Parker R. J. Parker J. D. Maasakkers Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations Atmospheric Chemistry and Physics |
title | Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations |
title_full | Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations |
title_fullStr | Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations |
title_full_unstemmed | Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations |
title_short | Satellite quantification of methane emissions from South American countries: a high-resolution inversion of TROPOMI and GOSAT observations |
title_sort | satellite quantification of methane emissions from south american countries a high resolution inversion of tropomi and gosat observations |
url | https://acp.copernicus.org/articles/25/797/2025/acp-25-797-2025.pdf |
work_keys_str_mv | AT sehancock satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT djjacob satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT zchen satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT hnesser satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT adavitt satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT adavitt satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT djvaron satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT mpsulprizio satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT nbalasus satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT laestrada satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT mcazorla satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT ldawidowski satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT sdiez satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT jdeast satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT epenn satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT carandles satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT carandles satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT jworden satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT iaben satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT rjparker satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT rjparker satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations AT jdmaasakkers satellitequantificationofmethaneemissionsfromsouthamericancountriesahighresolutioninversionoftropomiandgosatobservations |