Enhanced Corrosion Resistance of Carbon Steel Rebar in Chloride-Containing Water Solutions: The Role of Lotus Extract in Corrosion Inhibition

Corrosion inhibitors play a crucial role in the corrosion protection of rebars in reinforced concrete structures under harsh service conditions. However, conventional corrosion inhibitors often suffer from low efficiency and environmental concerns. This study investigates a low-cost and environmenta...

Full description

Saved in:
Bibliographic Details
Main Authors: Dan Song, Juhang Wang, Hao Guan, Sijie Zhang, Zhou Zhou, Shuguang Zhang
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/5/510
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Corrosion inhibitors play a crucial role in the corrosion protection of rebars in reinforced concrete structures under harsh service conditions. However, conventional corrosion inhibitors often suffer from low efficiency and environmental concerns. This study investigates a low-cost and environmentally friendly lotus leaf extract (LLE) as a corrosion inhibitor and examines its effects on carbon steel rebar corrosion under various conditions. The structure and composition of LLE were characterized using SEM, FTIR, and LC-MS. The effects of LLE on rebar corrosion behavior under different environmental conditions were investigated using electrochemical tests, Mott–Schottky analysis, and XPS. The main findings indicate that LLE is rich in polar chemical bonds and functional groups, which facilitate adsorption and film formation on the rebar surface. In a 3.5% NaCl solution, rebar corrosion is primarily influenced by the solution pH, and low concentrations of LLE exhibit effective corrosion inhibition. In a simulated concrete pore solution, higher concentrations of LLE promote the formation of a passivation film in a chloride-alkaline environment. Studies on pre-passivated rebar indicate that LLE effectively protects the passivation film, with the optimal LLE concentration for passivation film protection and adsorption film quality being 0.5 wt%. This study contributes to the application and development of novel LLE-based corrosion inhibition technology for carbon steel rebar.
ISSN:2075-4701