Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville Problem

We obtain a lower bound on the eigenvalue of smallest modulus associated with a Dirichlet problem in the general case of a regular Sturm-Liouville problem. The main motivation for this study is the result obtained by Mingarelli (1988).

Saved in:
Bibliographic Details
Main Authors: Mervis Kikonko, Angelo Bernado Mingarelli
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2016/7396951
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548078570176512
author Mervis Kikonko
Angelo Bernado Mingarelli
author_facet Mervis Kikonko
Angelo Bernado Mingarelli
author_sort Mervis Kikonko
collection DOAJ
description We obtain a lower bound on the eigenvalue of smallest modulus associated with a Dirichlet problem in the general case of a regular Sturm-Liouville problem. The main motivation for this study is the result obtained by Mingarelli (1988).
format Article
id doaj-art-b73ca5691ed7453e831e2ca1ffff3f8e
institution Kabale University
issn 1687-9643
1687-9651
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series International Journal of Differential Equations
spelling doaj-art-b73ca5691ed7453e831e2ca1ffff3f8e2025-02-03T06:42:24ZengWileyInternational Journal of Differential Equations1687-96431687-96512016-01-01201610.1155/2016/73969517396951Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville ProblemMervis Kikonko0Angelo Bernado Mingarelli1Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, SwedenSchool of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, CanadaWe obtain a lower bound on the eigenvalue of smallest modulus associated with a Dirichlet problem in the general case of a regular Sturm-Liouville problem. The main motivation for this study is the result obtained by Mingarelli (1988).http://dx.doi.org/10.1155/2016/7396951
spellingShingle Mervis Kikonko
Angelo Bernado Mingarelli
Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville Problem
International Journal of Differential Equations
title Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville Problem
title_full Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville Problem
title_fullStr Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville Problem
title_full_unstemmed Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville Problem
title_short Estimates on the Lower Bound of the Eigenvalue of the Smallest Modulus Associated with a General Weighted Sturm-Liouville Problem
title_sort estimates on the lower bound of the eigenvalue of the smallest modulus associated with a general weighted sturm liouville problem
url http://dx.doi.org/10.1155/2016/7396951
work_keys_str_mv AT merviskikonko estimatesonthelowerboundoftheeigenvalueofthesmallestmodulusassociatedwithageneralweightedsturmliouvilleproblem
AT angelobernadomingarelli estimatesonthelowerboundoftheeigenvalueofthesmallestmodulusassociatedwithageneralweightedsturmliouvilleproblem