Supercapacitance of Single-Walled Carbon Nanotubes-Polypyrrole Composites

The composites based on carbon nanotubes (CNTs) and conducting polymers (CPs) are promising materials for supercapacitor devices due to their unique nanostructure that combines the large pseudocapacitance of the CPs with the fast charging/discharging double-layer capacitance and excellent mechanical...

Full description

Saved in:
Bibliographic Details
Main Authors: Matei Raicopol, Alina Pruna, Luisa Pilan
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2013/367473
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The composites based on carbon nanotubes (CNTs) and conducting polymers (CPs) are promising materials for supercapacitor devices due to their unique nanostructure that combines the large pseudocapacitance of the CPs with the fast charging/discharging double-layer capacitance and excellent mechanical properties of the CNTs. Here, we report a new electrochemical method to obtain polypyrrole (PPY)/single-walled carbon nanotube (SWCNT) composites. In the first step, the SWCNTs are covalently functionalized with monomeric units of pyrrole by esterification of acyl chloride functionalized SWCNTs and N-(6-hydroxyhexyl)pyrrole. In the second step, the PPY/SWCNTs composites are obtained by copolymerizing the pyrrole monomer with the pyrrole units grafted on SWCNTs surface using controlled potential electrolysis. The composites were further characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results showed good electrochemical charge storage properties for the synthesized composites based on PPY and SWCNTs covalently functionalized with pyrrole units making them promising electrode materials for high power supercapacitors.
ISSN:2090-9063
2090-9071