Sixth-Kind Chebyshev and Bernoulli Polynomial Numerical Methods for Solving Nonlinear Mixed Partial Integrodifferential Equations with Continuous Kernels
In the present paper, a new efficient technique is described for solving nonlinear mixed partial integrodifferential equations with continuous kernels. Using the separation of variables, the nonlinear mixed partial integrodifferential equation is converted to a nonlinear Fredholm integral equation....
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2023/6647649 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, a new efficient technique is described for solving nonlinear mixed partial integrodifferential equations with continuous kernels. Using the separation of variables, the nonlinear mixed partial integrodifferential equation is converted to a nonlinear Fredholm integral equation. Then, using different numerical methods, the Bernoulli polynomial method and the Chebyshev polynomials of the sixth kind, the nonlinear Fredholm integral equation has been reduced into a system of nonlinear algebraic equations. The Banach fixed-point theory is utilized in order to have a conversation about the nonlinear mixed integral equation’s solution, namely, its existence and uniqueness. In addition, we talk about the convergence and stability of the solution. Finally, a comparison between the two different methods and some other famous methods is presented through various examples. All the numerical results are calculated and obtained using the Maple software. |
---|---|
ISSN: | 2314-8888 |