Impacts of Water Consumption in the Haihe Plain on the Climate of the Taihang Mountains, North China

In this study, the RegCM4 regional climate model was employed to investigate the impacts of water consumption in the Haihe Plain on the local climate in the nearby Taihang Mountains. Four simulation tests of twelve years’ duration were conducted with various schemes of water consumption by residents...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Zou, Chesheng Zhan, Ruxin Zhao, Peihua Qin, Tong Hu, Feiyu Wang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2018/6280737
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the RegCM4 regional climate model was employed to investigate the impacts of water consumption in the Haihe Plain on the local climate in the nearby Taihang Mountains. Four simulation tests of twelve years’ duration were conducted with various schemes of water consumption by residents, industries, and agriculture. The results indicate that water exploitation and consumption in the Haihe Plain causes wetting and cooling of the local land surface and rapid increases in the depth of the groundwater table. These wetting and cooling effects increase atmospheric moisture, which is transported to surrounding areas, including the Taihang Mountains to the west. In a simulation where water consumption in the Haihe Plain was doubled, the wetting and cooling effects in the Taihang Mountains were enhanced but at less than double the amount, because a cooler land surface does not enhance atmospheric convective activities. The impacts of water consumption activities in the Haihe Plain were more obvious during the irrigation seasons (primarily spring and summer). In addition, the land surface variables in the Taihang Mountains, e.g., sensible and latent heat fluxes, were less sensitive to the climatic impacts due to the water consumption activities in the Haihe Plain because they were strongly affected by local surface energy balance.
ISSN:1687-9309
1687-9317