Body temperature regulates glucose metabolism and torpid behavior

Abstract Glucose is a significant energy resource for maintaining physiological activities, including body temperature homeostasis, and glucose homeostasis is tightly regulated in mammals. Although ambient temperature tunes glucose metabolism to maintain euthermia, the significance of body temperatu...

Full description

Saved in:
Bibliographic Details
Main Authors: Ming-Liang Lee, Ching-Pu Chang, Chitoku Toda, Tomomi Nemoto, Ryosuke Enoki
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-61499-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Glucose is a significant energy resource for maintaining physiological activities, including body temperature homeostasis, and glucose homeostasis is tightly regulated in mammals. Although ambient temperature tunes glucose metabolism to maintain euthermia, the significance of body temperature in metabolic regulation remains unclear owing to strict thermoregulation. Activation of Qrfp neurons in the preoptic area induced a harmless hypothermic state known as Q-neuron–induced hypothermia and hypometabolism (QIH), which is suitable for studying glucose metabolism under hypothermia. In this study, we observed that QIH mice had hyperinsulinemia and insulin resistance. This glucose hypometabolic state was abolished by increasing the body temperature to euthermia. Moreover, QIH-mediated inappetence and locomotor inactivity were recovered in euthermia QIH mice. These results indicate that body temperature is considerably more powerful than ambient temperature in regulating glucose metabolism and behavior, and the glucose hypometabolism in QIH is secondary to hypothermia rather than modulated by Qrfp neurons.
ISSN:2041-1723