Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
In this article, we use a time-domain traveling-wave approach with a coupled-mode theory to describe the dynamics of a mid-Infrared (MIR) Quantum Cascade Laser (QCL) in the Distributed-Feedback (DFB) configuration. We demonstrate that linewidth enhancement factor (LEF) and spatial hole burning (SHB)...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10461039/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590419270041600 |
---|---|
author | Sara Zaminga Lorenzo Columbo Carlo Silvestri Mariangela Gioannini Frederic Grillot |
author_facet | Sara Zaminga Lorenzo Columbo Carlo Silvestri Mariangela Gioannini Frederic Grillot |
author_sort | Sara Zaminga |
collection | DOAJ |
description | In this article, we use a time-domain traveling-wave approach with a coupled-mode theory to describe the dynamics of a mid-Infrared (MIR) Quantum Cascade Laser (QCL) in the Distributed-Feedback (DFB) configuration. We demonstrate that linewidth enhancement factor (LEF) and spatial hole burning (SHB) play a crucial role in influencing the device's single-mode behavior. Neglecting them leads to an overestimation of the interval of pump currents granting single-mode emission and to an inaccurate simulation of the QCLs' multimode dynamics. By taking into account these two mechanisms, we inspect the combined action of the DFB grating's coupling strength and end facets' reflectivity. The purpose is to supply designers with a guideline to achieve the optimal structure for efficient single-mode emission, which is a highly required specification in manifold applications, like free-space optical communication. Numerical simulations are in good agreement with experimental findings relative to a DFB QCL operating at 9.34 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m. |
format | Article |
id | doaj-art-b643bf8d93084ae2ba8f2b9b8e76be97 |
institution | Kabale University |
issn | 1943-0655 |
language | English |
publishDate | 2024-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Photonics Journal |
spelling | doaj-art-b643bf8d93084ae2ba8f2b9b8e76be972025-01-24T00:00:11ZengIEEEIEEE Photonics Journal1943-06552024-01-011621910.1109/JPHOT.2024.337380510461039Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design AnalysisSara Zaminga0https://orcid.org/0009-0004-4011-5870Lorenzo Columbo1https://orcid.org/0000-0002-6566-9763Carlo Silvestri2https://orcid.org/0000-0002-9564-708XMariangela Gioannini3https://orcid.org/0000-0002-6250-5640Frederic Grillot4https://orcid.org/0000-0001-8236-098XLTCI Télécom Paris, Institut Polytechnique de Paris, Palaiseau, FranceDipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, ItalySchool of Electrical Engineering, Computer Science, The University of Queensland, Brisbane, QLD, AustraliaDipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, ItalyLTCI Télécom Paris, Institut Polytechnique de Paris, Palaiseau, FranceIn this article, we use a time-domain traveling-wave approach with a coupled-mode theory to describe the dynamics of a mid-Infrared (MIR) Quantum Cascade Laser (QCL) in the Distributed-Feedback (DFB) configuration. We demonstrate that linewidth enhancement factor (LEF) and spatial hole burning (SHB) play a crucial role in influencing the device's single-mode behavior. Neglecting them leads to an overestimation of the interval of pump currents granting single-mode emission and to an inaccurate simulation of the QCLs' multimode dynamics. By taking into account these two mechanisms, we inspect the combined action of the DFB grating's coupling strength and end facets' reflectivity. The purpose is to supply designers with a guideline to achieve the optimal structure for efficient single-mode emission, which is a highly required specification in manifold applications, like free-space optical communication. Numerical simulations are in good agreement with experimental findings relative to a DFB QCL operating at 9.34 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m.https://ieeexplore.ieee.org/document/10461039/Coupled-mode theorydistributed-feedbackeffective semiconductor maxwell-bloch equationslinewidth enhancement factorquantum cascade laserspatial hole burning |
spellingShingle | Sara Zaminga Lorenzo Columbo Carlo Silvestri Mariangela Gioannini Frederic Grillot Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis IEEE Photonics Journal Coupled-mode theory distributed-feedback effective semiconductor maxwell-bloch equations linewidth enhancement factor quantum cascade laser spatial hole burning |
title | Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis |
title_full | Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis |
title_fullStr | Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis |
title_full_unstemmed | Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis |
title_short | Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis |
title_sort | impact of spatial hole burning and linewidth enhancement factor on distributed feedback quantum cascade lasers a comprehensive design analysis |
topic | Coupled-mode theory distributed-feedback effective semiconductor maxwell-bloch equations linewidth enhancement factor quantum cascade laser spatial hole burning |
url | https://ieeexplore.ieee.org/document/10461039/ |
work_keys_str_mv | AT sarazaminga impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis AT lorenzocolumbo impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis AT carlosilvestri impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis AT mariangelagioannini impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis AT fredericgrillot impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis |