Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis

In this article, we use a time-domain traveling-wave approach with a coupled-mode theory to describe the dynamics of a mid-Infrared (MIR) Quantum Cascade Laser (QCL) in the Distributed-Feedback (DFB) configuration. We demonstrate that linewidth enhancement factor (LEF) and spatial hole burning (SHB)...

Full description

Saved in:
Bibliographic Details
Main Authors: Sara Zaminga, Lorenzo Columbo, Carlo Silvestri, Mariangela Gioannini, Frederic Grillot
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10461039/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590419270041600
author Sara Zaminga
Lorenzo Columbo
Carlo Silvestri
Mariangela Gioannini
Frederic Grillot
author_facet Sara Zaminga
Lorenzo Columbo
Carlo Silvestri
Mariangela Gioannini
Frederic Grillot
author_sort Sara Zaminga
collection DOAJ
description In this article, we use a time-domain traveling-wave approach with a coupled-mode theory to describe the dynamics of a mid-Infrared (MIR) Quantum Cascade Laser (QCL) in the Distributed-Feedback (DFB) configuration. We demonstrate that linewidth enhancement factor (LEF) and spatial hole burning (SHB) play a crucial role in influencing the device&#x0027;s single-mode behavior. Neglecting them leads to an overestimation of the interval of pump currents granting single-mode emission and to an inaccurate simulation of the QCLs&#x0027; multimode dynamics. By taking into account these two mechanisms, we inspect the combined action of the DFB grating&#x0027;s coupling strength and end facets&#x0027; reflectivity. The purpose is to supply designers with a guideline to achieve the optimal structure for efficient single-mode emission, which is a highly required specification in manifold applications, like free-space optical communication. Numerical simulations are in good agreement with experimental findings relative to a DFB QCL operating at 9.34 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m.
format Article
id doaj-art-b643bf8d93084ae2ba8f2b9b8e76be97
institution Kabale University
issn 1943-0655
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Photonics Journal
spelling doaj-art-b643bf8d93084ae2ba8f2b9b8e76be972025-01-24T00:00:11ZengIEEEIEEE Photonics Journal1943-06552024-01-011621910.1109/JPHOT.2024.337380510461039Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design AnalysisSara Zaminga0https://orcid.org/0009-0004-4011-5870Lorenzo Columbo1https://orcid.org/0000-0002-6566-9763Carlo Silvestri2https://orcid.org/0000-0002-9564-708XMariangela Gioannini3https://orcid.org/0000-0002-6250-5640Frederic Grillot4https://orcid.org/0000-0001-8236-098XLTCI T&#x00E9;l&#x00E9;com Paris, Institut Polytechnique de Paris, Palaiseau, FranceDipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, ItalySchool of Electrical Engineering, Computer Science, The University of Queensland, Brisbane, QLD, AustraliaDipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, ItalyLTCI T&#x00E9;l&#x00E9;com Paris, Institut Polytechnique de Paris, Palaiseau, FranceIn this article, we use a time-domain traveling-wave approach with a coupled-mode theory to describe the dynamics of a mid-Infrared (MIR) Quantum Cascade Laser (QCL) in the Distributed-Feedback (DFB) configuration. We demonstrate that linewidth enhancement factor (LEF) and spatial hole burning (SHB) play a crucial role in influencing the device&#x0027;s single-mode behavior. Neglecting them leads to an overestimation of the interval of pump currents granting single-mode emission and to an inaccurate simulation of the QCLs&#x0027; multimode dynamics. By taking into account these two mechanisms, we inspect the combined action of the DFB grating&#x0027;s coupling strength and end facets&#x0027; reflectivity. The purpose is to supply designers with a guideline to achieve the optimal structure for efficient single-mode emission, which is a highly required specification in manifold applications, like free-space optical communication. Numerical simulations are in good agreement with experimental findings relative to a DFB QCL operating at 9.34 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m.https://ieeexplore.ieee.org/document/10461039/Coupled-mode theorydistributed-feedbackeffective semiconductor maxwell-bloch equationslinewidth enhancement factorquantum cascade laserspatial hole burning
spellingShingle Sara Zaminga
Lorenzo Columbo
Carlo Silvestri
Mariangela Gioannini
Frederic Grillot
Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
IEEE Photonics Journal
Coupled-mode theory
distributed-feedback
effective semiconductor maxwell-bloch equations
linewidth enhancement factor
quantum cascade laser
spatial hole burning
title Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
title_full Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
title_fullStr Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
title_full_unstemmed Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
title_short Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
title_sort impact of spatial hole burning and linewidth enhancement factor on distributed feedback quantum cascade lasers a comprehensive design analysis
topic Coupled-mode theory
distributed-feedback
effective semiconductor maxwell-bloch equations
linewidth enhancement factor
quantum cascade laser
spatial hole burning
url https://ieeexplore.ieee.org/document/10461039/
work_keys_str_mv AT sarazaminga impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis
AT lorenzocolumbo impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis
AT carlosilvestri impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis
AT mariangelagioannini impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis
AT fredericgrillot impactofspatialholeburningandlinewidthenhancementfactorondistributedfeedbackquantumcascadelasersacomprehensivedesignanalysis