Energy Flow Boundary Element Method for Vibration Analysis of One and Two Dimension Structures

In this paper, Energy Flow Boundary Element Method (EFBEM) was developed to predict the vibration behavior of one- and two-dimensional structures in the medium-to-high frequency ranges. Free Space Green functions used in the method were obtained from EFA energy equations. Direct and indirect EFBEMs...

Full description

Saved in:
Bibliographic Details
Main Authors: Ho-Won Lee, Suk-Yoon Hong, Do-Hyun Park, Hyun-Wung Kwon
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2008/607379
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, Energy Flow Boundary Element Method (EFBEM) was developed to predict the vibration behavior of one- and two-dimensional structures in the medium-to-high frequency ranges. Free Space Green functions used in the method were obtained from EFA energy equations. Direct and indirect EFBEMs were formulated for both one- and two-dimensional cases, and numerically applied to predict the energy density and intensity distributions of simple Euler-Bernoulli beams, single rectangular thin plates, and L-shaped thin plates vibrating in the medium-to-high frequency ranges. The results from these methods were compared with the EFA solutions to verify the EFBEM.
ISSN:1070-9622
1875-9203