An in-depth study of indolone derivatives as potential lung cancer treatment

Abstract Lung cancer is a type of cancer that begins in the lungs and is one of the leading causes of cancer-related deaths worldwide. Herein an attempt to explore the relationship between the properties of indolone derivatives and their anticancer activity was investigated, implementing in silico a...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed Er-rajy, Mohamed El fadili, Radwan Alnajjar, Sara Zarougui, Somdutt Mujwar, Khalil Azzaoui, Hatem A. Abuelizz, Belkheir Hammouti, Menana Elhallaoui
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-85707-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Lung cancer is a type of cancer that begins in the lungs and is one of the leading causes of cancer-related deaths worldwide. Herein an attempt to explore the relationship between the properties of indolone derivatives and their anticancer activity was investigated, implementing in silico approaches. Four indolone derivatives with the highest anticancer potential were selected to evaluate their pharmacological properties. The ADMET analysis revealed that these compounds exhibited favourable drug-like properties, meeting nearly all the key pharmacological criteria required for potential therapeutic agents. Molecular docking studies of the most active compounds revealed strong interactions with critical amino acid residues in the PDK1 receptor’s binding site, underscoring their potential as effective PDK1 inhibitors. In addition, 200 ns molecular dynamics (MD) simulations of two R and S configurations validated the stability of the ligand-receptor complexes, with minimal structural deviations observed throughout the simulation period. These comprehensive results highlight the potential of the selected indolone derivatives as viable drug candidates and provide a solid foundation for future optimization efforts aimed at developing novel PDK1 inhibitors for cancer therapy.
ISSN:2045-2322