Gastric Cancer Mesenchymal Stem Cells Inhibit NK Cell Function through mTOR Signalling to Promote Tumour Growth

The dysfunction of natural killer (NK) cells has been increasingly reported in malignancies, especially in solid tumours. Mesenchymal stem cells (MSCs) exhibit pleiotropic functions that include mediating immune cell exhaustion which is implicated in cancer progression. However, the association of M...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuwei Guo, Chao Huang, Fengfeng Han, Bin Chen, Ying Ding, Yuanyuan Zhao, Zhihong Chen, Shaodi Wen, Mei Wang, Bo Shen, Wei Zhu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Stem Cells International
Online Access:http://dx.doi.org/10.1155/2021/9989790
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dysfunction of natural killer (NK) cells has been increasingly reported in malignancies, especially in solid tumours. Mesenchymal stem cells (MSCs) exhibit pleiotropic functions that include mediating immune cell exhaustion which is implicated in cancer progression. However, the association of MSCs derived from gastric cancer (gastric cancer mesenchymal stem cells: GCMSCs) with the dysfunction of NK cells remains poorly understood. In this study, we demonstrated that GCMSCs effectively contributed to the exhaustion of NK cells through the release of soluble factors. Furthermore, passivation of the antitumour effect in NK cells was closely associated with their dysfunctional state. The GCMSC-conditioned medium prevented the frequency and effector function of infiltrating NK cells in tumour-bearing mouse models, thus promoting tumour growth. Mechanistically, mammalian target of rapamycin (mTOR) signalling, a critical regulator of cellular metabolism that mediates the function of immune cells, was inhibited in NK cells treated with GCMSCs. However, the checkpoint receptor PD-1 was still present at minimal levels with or without GCMSCs. The study results revealed that GCMSCs contributed to dysfunctional NK cells involved at least partially in the inhibition of mTOR signalling, suggesting potential directions for NK cell-based cancer immunotherapy.
ISSN:1687-966X
1687-9678