Innovative Approaches of Optimization Methods Used in Geothermal Power Plants: Artificial Neural Networks and Genetic Algorithms

In this study, a general description of geothermal power plants is provided, and the optimization methods used are summarized. Following the review of these optimization methods, the advantages of heuristic methods and the success of the developed models are demonstrated. The challenges in optimizin...

Full description

Saved in:
Bibliographic Details
Main Authors: Özgür Özer, Harun Kemal Öztürk
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/311
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a general description of geothermal power plants is provided, and the optimization methods used are summarized. Following the review of these optimization methods, the advantages of heuristic methods and the success of the developed models are demonstrated. The challenges in optimizing geothermal systems, including the limitations due to their complexity and the use of multiple parameters, are discussed. Heuristic methods, particularly the widely used artificial neural networks and genetic algorithms, are explained in general terms. Recent studies highlight that the combined use of artificial neural networks and genetic algorithms can produce faster and more consistent results. This demonstrates the benefits of using advanced methods for geothermal resource utilization and power plant optimization. An innovative optimization method has been developed using the operational data of an ORC geothermal power plant in the city of Izmir. The computational method, using genetic algorithms with artificial neural networks as the fitness function, has identified the optimal operating conditions, achieving a 39.41% increase in net power output. The plant’s gross power generation has increased from 4943 kW to 6624 kW.
ISSN:1996-1073