A generalization of some fixed point theorems of K. M. Ghosh

This note establishes the following result. Let T be a selfmap of a normed linear space E. For 0<λ≤1, define Tλx=λx+(1−λ)Tx for each x in E. If, in addition, S=TTλ satisfies any contractive definition strong enough to guarantee that S has a unique fixed point u in E, and, if TTλu=TλTu, then u is...

Full description

Saved in:
Bibliographic Details
Main Author: B. E. Rhoades
Format: Article
Language:English
Published: Wiley 1982-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171282000192
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545327854387200
author B. E. Rhoades
author_facet B. E. Rhoades
author_sort B. E. Rhoades
collection DOAJ
description This note establishes the following result. Let T be a selfmap of a normed linear space E. For 0<λ≤1, define Tλx=λx+(1−λ)Tx for each x in E. If, in addition, S=TTλ satisfies any contractive definition strong enough to guarantee that S has a unique fixed point u in E, and, if TTλu=TλTu, then u is the unique fixed point for T.
format Article
id doaj-art-b500c00651b44533946743f05361e591
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1982-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-b500c00651b44533946743f05361e5912025-02-03T07:26:14ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251982-01-015120320310.1155/S0161171282000192A generalization of some fixed point theorems of K. M. GhoshB. E. Rhoades0Mathematics Department, Indiana University, Bloomington 47405, Indiana, USAThis note establishes the following result. Let T be a selfmap of a normed linear space E. For 0<λ≤1, define Tλx=λx+(1−λ)Tx for each x in E. If, in addition, S=TTλ satisfies any contractive definition strong enough to guarantee that S has a unique fixed point u in E, and, if TTλu=TλTu, then u is the unique fixed point for T.http://dx.doi.org/10.1155/S0161171282000192fixed pointmean value iteration.
spellingShingle B. E. Rhoades
A generalization of some fixed point theorems of K. M. Ghosh
International Journal of Mathematics and Mathematical Sciences
fixed point
mean value iteration.
title A generalization of some fixed point theorems of K. M. Ghosh
title_full A generalization of some fixed point theorems of K. M. Ghosh
title_fullStr A generalization of some fixed point theorems of K. M. Ghosh
title_full_unstemmed A generalization of some fixed point theorems of K. M. Ghosh
title_short A generalization of some fixed point theorems of K. M. Ghosh
title_sort generalization of some fixed point theorems of k m ghosh
topic fixed point
mean value iteration.
url http://dx.doi.org/10.1155/S0161171282000192
work_keys_str_mv AT berhoades ageneralizationofsomefixedpointtheoremsofkmghosh
AT berhoades generalizationofsomefixedpointtheoremsofkmghosh