Bifurcation Analysis and Chaos Control in a Discrete-Time Parasite-Host Model

A discrete-time parasite-host system with bifurcation is investigated in detail in this paper. The existence and stability of nonnegative fixed points are explored and the conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation are derived by using the center manifold theorem...

Full description

Saved in:
Bibliographic Details
Main Authors: Xueli Chen, Lishun Ren
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2017/9275474
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A discrete-time parasite-host system with bifurcation is investigated in detail in this paper. The existence and stability of nonnegative fixed points are explored and the conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation are derived by using the center manifold theorem and bifurcation theory. And we also prove the chaos in the sense of Marotto. The numerical simulations not only illustrate the consistence with the theoretical analysis, but also exhibit other complex dynamical behaviors, such as bifurcation diagrams, Maximum Lyapunov exponents, and phase portraits. More specifically, when the integral step size is chosen as a bifurcation parameter, this paper presents the finding of period orbits, attracting invariant cycles and chaotic attractors of the discrete-time parasite-host system. Specifically, we have stabilized the chaotic orbits at an unstable fixed point by using the feedback control method.
ISSN:1026-0226
1607-887X