Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species

We investigate the multidimensional stability of planar traveling waves in competitive–cooperative Lotka–Volterra system of three species in <i>n</i>-dimensional space. For planar traveling waves with speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&quo...

Full description

Saved in:
Bibliographic Details
Main Authors: Na Shi, Xin Wu, Zhaohai Ma
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/197
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588082971410432
author Na Shi
Xin Wu
Zhaohai Ma
author_facet Na Shi
Xin Wu
Zhaohai Ma
author_sort Na Shi
collection DOAJ
description We investigate the multidimensional stability of planar traveling waves in competitive–cooperative Lotka–Volterra system of three species in <i>n</i>-dimensional space. For planar traveling waves with speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>></mo><msup><mi>c</mi><mo>*</mo></msup></mrow></semantics></math></inline-formula>, we establish their exponential stability in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mo>∞</mo></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, which is expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>t</mi><mrow><mo>−</mo><mstyle><mfrac><mi>n</mi><mn>2</mn></mfrac></mstyle></mrow></msup><msup><mi mathvariant="normal">e</mi><mrow><mo>−</mo><msub><mi>ε</mi><mi>τ</mi></msub><mi>σ</mi><mi>t</mi></mrow></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is a constant and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>τ</mi></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> depends on the time delay <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> as a decreasing function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>τ</mi></msub><mo>=</mo><mi>ε</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The time delay is shown to significantly reduce the decay rate of the solution. Additionally, for planar traveling waves with speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>=</mo><msup><mi>c</mi><mo>*</mo></msup></mrow></semantics></math></inline-formula>, we demonstrate their algebraic stability in the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>t</mi><mrow><mo>−</mo><mstyle><mfrac><mi>n</mi><mn>2</mn></mfrac></mstyle></mrow></msup></semantics></math></inline-formula>. Our analysis employs the Fourier transform and a weighted energy method with a carefully chosen weight function.
format Article
id doaj-art-b4e428d30eec48a09819b82d83afb669
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-b4e428d30eec48a09819b82d83afb6692025-01-24T13:39:42ZengMDPI AGMathematics2227-73902025-01-0113219710.3390/math13020197Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three SpeciesNa Shi0Xin Wu1Zhaohai Ma2School of Science, China University of Geosciences, Beijing 100083, ChinaSchool of Sciences, East China JiaoTong University, Nanchang 330013, ChinaSchool of Science, China University of Geosciences, Beijing 100083, ChinaWe investigate the multidimensional stability of planar traveling waves in competitive–cooperative Lotka–Volterra system of three species in <i>n</i>-dimensional space. For planar traveling waves with speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>></mo><msup><mi>c</mi><mo>*</mo></msup></mrow></semantics></math></inline-formula>, we establish their exponential stability in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mo>∞</mo></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, which is expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>t</mi><mrow><mo>−</mo><mstyle><mfrac><mi>n</mi><mn>2</mn></mfrac></mstyle></mrow></msup><msup><mi mathvariant="normal">e</mi><mrow><mo>−</mo><msub><mi>ε</mi><mi>τ</mi></msub><mi>σ</mi><mi>t</mi></mrow></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is a constant and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>τ</mi></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> depends on the time delay <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> as a decreasing function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>τ</mi></msub><mo>=</mo><mi>ε</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The time delay is shown to significantly reduce the decay rate of the solution. Additionally, for planar traveling waves with speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>=</mo><msup><mi>c</mi><mo>*</mo></msup></mrow></semantics></math></inline-formula>, we demonstrate their algebraic stability in the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>t</mi><mrow><mo>−</mo><mstyle><mfrac><mi>n</mi><mn>2</mn></mfrac></mstyle></mrow></msup></semantics></math></inline-formula>. Our analysis employs the Fourier transform and a weighted energy method with a carefully chosen weight function.https://www.mdpi.com/2227-7390/13/2/197multidimensional stabilitycompetitive–cooperative systemweighted energy methodplanar traveling wavesFourier transform
spellingShingle Na Shi
Xin Wu
Zhaohai Ma
Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species
Mathematics
multidimensional stability
competitive–cooperative system
weighted energy method
planar traveling waves
Fourier transform
title Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species
title_full Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species
title_fullStr Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species
title_full_unstemmed Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species
title_short Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species
title_sort multidimensional stability of planar traveling waves for competitive cooperative lotka volterra system of three species
topic multidimensional stability
competitive–cooperative system
weighted energy method
planar traveling waves
Fourier transform
url https://www.mdpi.com/2227-7390/13/2/197
work_keys_str_mv AT nashi multidimensionalstabilityofplanartravelingwavesforcompetitivecooperativelotkavolterrasystemofthreespecies
AT xinwu multidimensionalstabilityofplanartravelingwavesforcompetitivecooperativelotkavolterrasystemofthreespecies
AT zhaohaima multidimensionalstabilityofplanartravelingwavesforcompetitivecooperativelotkavolterrasystemofthreespecies