A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unit

Abstract The Mendelian Phenotype Search Engine (MPSE), a clinical decision support tool using Natural Language Processing and Machine Learning, helped neonatologists expedite decisions to whole genome sequencing (WGS) to diagnose patients in the neonatal intensive care unit. After the MPSE was intro...

Full description

Saved in:
Bibliographic Details
Main Authors: Edwin F. Juarez, Bennet Peterson, Erica Sanford Kobayashi, Sheldon Gilmer, Laura E. Tobin, Brandan Schultz, Jerica Lenberg, Jeanne Carroll, Shiyu Bai-Tong, Nathaly M. Sweeney, Curtis Beebe, Lawrence Stewart, Lauren Olsen, Julie Reinke, Elizabeth A. Kiernan, Rebecca Reimers, Kristen Wigby, Chris Tackaberry, Mark Yandell, Charlotte Hobbs, Matthew N. Bainbridge
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01458-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571260813443072
author Edwin F. Juarez
Bennet Peterson
Erica Sanford Kobayashi
Sheldon Gilmer
Laura E. Tobin
Brandan Schultz
Jerica Lenberg
Jeanne Carroll
Shiyu Bai-Tong
Nathaly M. Sweeney
Curtis Beebe
Lawrence Stewart
Lauren Olsen
Julie Reinke
Elizabeth A. Kiernan
Rebecca Reimers
Kristen Wigby
Chris Tackaberry
Mark Yandell
Charlotte Hobbs
Matthew N. Bainbridge
author_facet Edwin F. Juarez
Bennet Peterson
Erica Sanford Kobayashi
Sheldon Gilmer
Laura E. Tobin
Brandan Schultz
Jerica Lenberg
Jeanne Carroll
Shiyu Bai-Tong
Nathaly M. Sweeney
Curtis Beebe
Lawrence Stewart
Lauren Olsen
Julie Reinke
Elizabeth A. Kiernan
Rebecca Reimers
Kristen Wigby
Chris Tackaberry
Mark Yandell
Charlotte Hobbs
Matthew N. Bainbridge
author_sort Edwin F. Juarez
collection DOAJ
description Abstract The Mendelian Phenotype Search Engine (MPSE), a clinical decision support tool using Natural Language Processing and Machine Learning, helped neonatologists expedite decisions to whole genome sequencing (WGS) to diagnose patients in the neonatal intensive care unit. After the MPSE was introduced, utilization of WGS increased, time to ordering WGS decreased, and WGS diagnostic yield increased.
format Article
id doaj-art-b4dc20653c5944d6a9839aed1de65d34
institution Kabale University
issn 2398-6352
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-b4dc20653c5944d6a9839aed1de65d342025-02-02T12:43:49ZengNature Portfolionpj Digital Medicine2398-63522025-01-01811410.1038/s41746-025-01458-9A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unitEdwin F. Juarez0Bennet Peterson1Erica Sanford Kobayashi2Sheldon Gilmer3Laura E. Tobin4Brandan Schultz5Jerica Lenberg6Jeanne Carroll7Shiyu Bai-Tong8Nathaly M. Sweeney9Curtis Beebe10Lawrence Stewart11Lauren Olsen12Julie Reinke13Elizabeth A. Kiernan14Rebecca Reimers15Kristen Wigby16Chris Tackaberry17Mark Yandell18Charlotte Hobbs19Matthew N. Bainbridge20Rady Children’s Institute for Genomic MedicineDepartment of Biomedical Informatics, University of UtahRady Children’s Institute for Genomic MedicineRady Children’s Hospital San DiegoRady Children’s Institute for Genomic MedicineRady Children’s Institute for Genomic MedicineRady Children’s Institute for Genomic MedicineRady Children’s Hospital San DiegoRady Children’s Hospital San DiegoRady Children’s Hospital San DiegoRady Children’s Hospital San DiegoRady Children’s Hospital San DiegoRady Children’s Hospital San DiegoRady Children’s Hospital San DiegoRady Children’s Hospital San DiegoRady Children’s Institute for Genomic MedicineRady Children’s Institute for Genomic MedicineClinithinkDepartment of Human Genetics, Utah Center for Genetic Discovery, University of UtahRady Children’s Institute for Genomic MedicineRady Children’s Institute for Genomic MedicineAbstract The Mendelian Phenotype Search Engine (MPSE), a clinical decision support tool using Natural Language Processing and Machine Learning, helped neonatologists expedite decisions to whole genome sequencing (WGS) to diagnose patients in the neonatal intensive care unit. After the MPSE was introduced, utilization of WGS increased, time to ordering WGS decreased, and WGS diagnostic yield increased.https://doi.org/10.1038/s41746-025-01458-9
spellingShingle Edwin F. Juarez
Bennet Peterson
Erica Sanford Kobayashi
Sheldon Gilmer
Laura E. Tobin
Brandan Schultz
Jerica Lenberg
Jeanne Carroll
Shiyu Bai-Tong
Nathaly M. Sweeney
Curtis Beebe
Lawrence Stewart
Lauren Olsen
Julie Reinke
Elizabeth A. Kiernan
Rebecca Reimers
Kristen Wigby
Chris Tackaberry
Mark Yandell
Charlotte Hobbs
Matthew N. Bainbridge
A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unit
npj Digital Medicine
title A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unit
title_full A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unit
title_fullStr A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unit
title_full_unstemmed A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unit
title_short A machine learning decision support tool optimizes WGS utilization in a neonatal intensive care unit
title_sort machine learning decision support tool optimizes wgs utilization in a neonatal intensive care unit
url https://doi.org/10.1038/s41746-025-01458-9
work_keys_str_mv AT edwinfjuarez amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT bennetpeterson amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT ericasanfordkobayashi amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT sheldongilmer amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT lauraetobin amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT brandanschultz amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT jericalenberg amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT jeannecarroll amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT shiyubaitong amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT nathalymsweeney amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT curtisbeebe amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT lawrencestewart amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT laurenolsen amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT juliereinke amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT elizabethakiernan amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT rebeccareimers amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT kristenwigby amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT christackaberry amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT markyandell amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT charlottehobbs amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT matthewnbainbridge amachinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT edwinfjuarez machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT bennetpeterson machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT ericasanfordkobayashi machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT sheldongilmer machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT lauraetobin machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT brandanschultz machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT jericalenberg machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT jeannecarroll machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT shiyubaitong machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT nathalymsweeney machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT curtisbeebe machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT lawrencestewart machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT laurenolsen machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT juliereinke machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT elizabethakiernan machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT rebeccareimers machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT kristenwigby machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT christackaberry machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT markyandell machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT charlottehobbs machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit
AT matthewnbainbridge machinelearningdecisionsupporttooloptimizeswgsutilizationinaneonatalintensivecareunit