Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodo

This work introduces a new, comprehensive dataset for Fault Detection and Diagnosis (FDD) in inverter-driven Permanent Magnet Synchronous Motor (PMSM) systems. Despite the increasing significance of AI-driven FDD techniques, the domain suffers from a lack of publicly accessible, real-world datasets...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdelkabir Bacha, Ramzi El Idrissi, Khalid Janati Idrissi, Fatima Lmai
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340925000186
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832576501088780288
author Abdelkabir Bacha
Ramzi El Idrissi
Khalid Janati Idrissi
Fatima Lmai
author_facet Abdelkabir Bacha
Ramzi El Idrissi
Khalid Janati Idrissi
Fatima Lmai
author_sort Abdelkabir Bacha
collection DOAJ
description This work introduces a new, comprehensive dataset for Fault Detection and Diagnosis (FDD) in inverter-driven Permanent Magnet Synchronous Motor (PMSM) systems. Despite the increasing significance of AI-driven FDD techniques, the domain suffers from a lack of publicly accessible, real-world datasets for algorithm development and evaluation. Our contribution fills this gap by offering a comprehensive, multi-sensor dataset obtained from a bespoke experimental apparatus. The dataset includes different fault cases, such as open-circuit faults, short-circuit faults, and overheating conditions in the inverter switches. The dataset incorporates 8 raw sensor measurements and 15 derived features, recorded at 10 Hz, amounting to 10,892 samples across 9 operational conditions (one normal, eight fault types). By keeping this dataset publicly accessible, we seek to accelerate research in AI-driven fault identification and diagnosis for electric drive systems.
format Article
id doaj-art-b4a4a61810ad40538638a7ca6fac6ce2
institution Kabale University
issn 2352-3409
language English
publishDate 2025-02-01
publisher Elsevier
record_format Article
series Data in Brief
spelling doaj-art-b4a4a61810ad40538638a7ca6fac6ce22025-01-31T05:11:49ZengElsevierData in Brief2352-34092025-02-0158111286Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodoAbdelkabir Bacha0Ramzi El Idrissi1Khalid Janati Idrissi2Fatima Lmai3École Nationale Supérieure d’Électricité et de Mécanique, Hassan II university of Casablanca, Morocco; Institut Supérieur d'Etudes Maritimes, Casablanca, Morocco; Corresponding author at: École Nationale Supérieure d’Électricité et de Mécanique, Hassan II university of Casablanca, Morocco.Faculty of Sciences, Hassan II University of Casablanca, MoroccoLaboratory of Engineering, Industrial Management and Innovation, Hassan First University, MoroccoFaculty of Sciences, Hassan II University of Casablanca, MoroccoThis work introduces a new, comprehensive dataset for Fault Detection and Diagnosis (FDD) in inverter-driven Permanent Magnet Synchronous Motor (PMSM) systems. Despite the increasing significance of AI-driven FDD techniques, the domain suffers from a lack of publicly accessible, real-world datasets for algorithm development and evaluation. Our contribution fills this gap by offering a comprehensive, multi-sensor dataset obtained from a bespoke experimental apparatus. The dataset includes different fault cases, such as open-circuit faults, short-circuit faults, and overheating conditions in the inverter switches. The dataset incorporates 8 raw sensor measurements and 15 derived features, recorded at 10 Hz, amounting to 10,892 samples across 9 operational conditions (one normal, eight fault types). By keeping this dataset publicly accessible, we seek to accelerate research in AI-driven fault identification and diagnosis for electric drive systems.http://www.sciencedirect.com/science/article/pii/S2352340925000186DatasetFault detectionDiagnosisInverter-drivenPMSMExperimental setup
spellingShingle Abdelkabir Bacha
Ramzi El Idrissi
Khalid Janati Idrissi
Fatima Lmai
Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodo
Data in Brief
Dataset
Fault detection
Diagnosis
Inverter-driven
PMSM
Experimental setup
title Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodo
title_full Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodo
title_fullStr Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodo
title_full_unstemmed Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodo
title_short Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systemszenodo
title_sort comprehensive dataset for fault detection and diagnosis in inverter driven permanent magnet synchronous motor systemszenodo
topic Dataset
Fault detection
Diagnosis
Inverter-driven
PMSM
Experimental setup
url http://www.sciencedirect.com/science/article/pii/S2352340925000186
work_keys_str_mv AT abdelkabirbacha comprehensivedatasetforfaultdetectionanddiagnosisininverterdrivenpermanentmagnetsynchronousmotorsystemszenodo
AT ramzielidrissi comprehensivedatasetforfaultdetectionanddiagnosisininverterdrivenpermanentmagnetsynchronousmotorsystemszenodo
AT khalidjanatiidrissi comprehensivedatasetforfaultdetectionanddiagnosisininverterdrivenpermanentmagnetsynchronousmotorsystemszenodo
AT fatimalmai comprehensivedatasetforfaultdetectionanddiagnosisininverterdrivenpermanentmagnetsynchronousmotorsystemszenodo