Comparative analysis of spatiotemporal gait parameters in patients with distal femoral megaprosthesis and healthy subjects using an inertial measurement unit (IMU)

Limb salvage surgery (LSS) with megaprosthesis is a common treatment for distal femur tumors, but its impact on gait remains poorly understood. Traditional gait analysis methods are costly and require specialized equipment. This study aims to compare spatiotemporal gait parameters between patients w...

Full description

Saved in:
Bibliographic Details
Main Authors: Nadia Jover-Jorge, Paula González-Rojo, José Vicente Amaya-Valero, Francisco Baixauli-García, Carolina de la Calva-Ceinós, Manuel Angulo-Sánchez, Javier Martínez-Gramage, Juan Francisco Lisón
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Wearable Technologies
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2631717625100091/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Limb salvage surgery (LSS) with megaprosthesis is a common treatment for distal femur tumors, but its impact on gait remains poorly understood. Traditional gait analysis methods are costly and require specialized equipment. This study aims to compare spatiotemporal gait parameters between patients with distal femur megaprosthesis and healthy controls using an inertial measurement unit (IMU). We conducted a case–control study with 79 participants: 31 patients with distal femur megaprosthesis and 48 healthy controls. Gait data were collected using an IMU placed at L5-S1, capturing metrics such as gait quality index (GQI), pelvic kinematics, propulsion index, and gait speed. Statistical analysis included Student’s t-test, Mann–Whitney U test, and one-way ANOVA to compare gait parameters across groups. Patients with megaprosthesis exhibited significantly lower gait speed, propulsion index and anteroposterior acceleration symmetry index compared to controls (p < .05). GQI was reduced in the healthy legs of the cases (92.3%) compared to control legs (96.6%). Adaptations included prolonged stance phases in healthy legs and decreased single support phases in prosthetic legs. Despite these changes, gait patterns remained within functional ranges. IMU-based gait analysis reveals significant but functional alterations in gait mechanics among patients with distal femoral megaprosthesis. These findings underscore the need for tailored rehabilitation strategies to address compensatory mechanisms, optimize mobility, and enhance long-term outcomes. The use of IMU technology offers a cost-effective and portable alternative for clinical gait assessments.
ISSN:2631-7176